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The pancreas has been the subject of intense research due to the debilitating diseases that result from its
dysfunction. In this review, we summarize current understanding of the critical tissue interactions and intra-
cellular regulatory events that take place during formation of the pancreas from a small cluster of cells in the
foregut domain of the mouse embryo. Importantly, an understanding of principles that govern the develop-
ment of this organ has equipped us with the means to manipulate both embryonic and differentiated adult
cells in the context of regenerative medicine. The emerging area of lineage modulation within the adult
pancreas is of particular interest, and this review summarizes recent findings that exemplify how lessons
learned from development are being applied to reveal the potential of fully differentiated cells to change fate.
Introduction
The pancreas originates from the gut endoderm, one of three

germ layers that emerge after gastrulation in vertebrates, and

through a series of coordinated signaling events and transcrip-

tional regulatory cascades is patterned into the adult organ

(Gittes, 2009). Distinct cell types reside in the mature pancreas

and perform exocrine or endocrine functions. The exocrine

compartment, which accounts for greater than 90% of pancre-

atic tissue in adult mice, is identified as acinar and ductal cells.

Acinar cells synthesize digestive enzymes that aid in nutrient

metabolism, and ductal cells line the channels that transport

these secretions to the gastrointestinal tract. The endocrine

compartment, which forms the remainder of the organ, is

a compound structure called the Islet of Langerhans. Multiple

cell types populate the islet, including insulin-producing b-cells,

glucagon-producing a-cells, somatostatin-producing d-cells,

and pancreatic polypeptide-producing PP cells. Finely tuned

regulation of hormone release is achieved by coordinated

interactions between the islet cells and the vascular environ-

ment, establishing hormonal homeostasis within the animal.

The widespread prevalence of debilitating diseases that result

from pancreatic dysfunction underscores the urgent need to

strengthen our understanding of the principles governing the

formation and function of this organ. Diabetes, resulting from

either loss (type 1) or impaired function (type 2) of pancreatic

b-cells, is characterized by abnormal regulation of blood glucose

levels and significant complications. According to the American

Diabetes Association, close to 8% of the population of the

United States suffers from diabetes. Pancreatic cancer, specifi-

cally pancreatic ductal adenocarcinoma, carries a grim prog-

nosis with a median survival of 6 months, and 5 year survival of

3%–5% (Wescott and Rustgi, 2008). Understanding the etiology

of these diseases, and working toward cures, will rely on our

comprehension of the development, functional capacity, and

cellular plasticity of the organ.

Past research has focused on unraveling the mechanisms

involved in normal growth of the pancreas and how these

processes go awry upon genetic or physical insult. Classical

gene knockout and Cre-based recombination technologies
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have made great inroads into establishing the molecular hierar-

chies that operate during pancreatic organogenesis. Translating

this information toward disease therapy is a significant goal of

ongoing research. In the obvious scenario, dysfunction of

insulin-producing b-cells leads to severe defects, and it is partic-

ularly valuable to find avenues to either replenish the damaged

cells using external sources or trigger a response within the

organism to replace the lost cell population. To this end, the

pancreatic developmental program can be used as a road map

to examine the pliability of both embryonic stem cells and cells

resident in the adult pancreas as sources of b-cells. In this

review, we summarize current understanding of vertebrate

pancreas development, and examine the various attempts

made to maneuver cells, both embryonic and adult, toward

pancreatic fate.

Pancreas Induction
Morphogenesis

The morphological events that occur during pancreas organo-

genesis involve a series of complex tissue interactions that are

described in extensive detail both in vivo and in explant culture

analyses using the mouse as a model organism (Gittes, 2009;

Oliver-Krasinski and Stoffers, 2008). Cells fated to form the

pancreas arise from the primitive gut tube, derived from defini-

tive endoderm (Wells and Melton, 2000). The first morphological

evidence for a pancreatic domain appears as a thickening on the

dorsal side of the foregut epithelium at embryonic day 9.5 (e9.5).

Simultaneously, two ventral buds originate laterally within the

epithelium, in close apposition to the hepatic and bile duct endo-

derm, although one of them regresses prior to gut rotation. As

the dorsal bud thickens, the base of the diverticulum attached

to the epithelial sheet thins out to adopt a stalk-like morphology.

After gut rotation and fusion of the dorsal and ventral aspects,

the pancreatic epithelium branches into the surrounding mesen-

chyme (Figure 1). Fate specification of all differentiated cell types

that form the adult organ occurs by e15.5. As the complex three-

dimensional branched structure forms, endocrine precursors,

depicted as green cells in Figure 1, delaminate from the devel-

oping epithelium and the cells that remain within the epithelium
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Figure 1. Early Steps during Embryonic
Pancreas Development
Dorsal (dp) and ventral (vp) pancreatic buds can
be visualized (yellow) along with the stomach
(sto), duodenum (duo), and liver bud (Li) in the
posterior foregut at e10.5. The pancreatic mesen-
chyme (gray) collects around developing buds and
provides essential instructive signals. Gut rotation
(represented by the blue arrow) at e11.5 leads to
fusion of the ventral and dorsal aspects followed
by expansion into the surrounding mesenchyme
(gray). After e12.5, secondary transition leads to
endocrine specification (green) within the epithe-
lium furthest from the mesenchyme, in close
apposition to the vasculature (red vessels).
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(yellow) adopt exocrine fates. Attempts to elucidate the

sequence and molecular requirements for appropriate branching

have focused on culture systems that support growth of the

embryonic pancreas in vitro (Gittes et al., 1996; Percival and

Slack, 1999). Live imaging of tissue explants has revealed that

the pattern of branching within the embryonic pancreas is similar

to ‘‘domain branching’’ in the embryonic lung, wherein new buds

originate lateral to the primary axis of budding, distinct from the

terminal bifurcation that occurs in the developing kidney (Morri-

sey and Hogan, 2010; Puri and Hebrok, 2007). Although such

analyses, along with modeling of morphogenetic movements,

have begun to forge a path toward improving our understanding

of the complex tissue organization that occurs during develop-

ment, the mechanisms that govern the intricate concert of

branching in the pancreas remain poorly understood (Puri and

Hebrok, 2007; Setty et al., 2008).

The Developmental Niche

The cellular environment of the growing pancreas plays a crucial

instructive role. Prepancreatic patterning of the gut endoderm

relies on signals from the surrounding mesodermal tissues—

the notochord, lateral plate mesoderm, and the vasculature

(Gittes, 2009; Wells and Melton, 2000). The earliest such

interaction occurs upon gut closure, when the dorsal face of

the epithelial sheet is in close apposition to the notochord.

Molecular signals from the notochord establish a permissive

environment for dorsal pancreatic specification within the gut

endoderm (Hebrok et al., 1998). Patterning of the ventral buds

is distinct from that of the dorsal bud, relying on signals from

the overlying cardiac mesenchyme and the lateral plate meso-

derm (Kumar et al., 2003; Wandzioch and Zaret, 2009). Intrigu-

ingly, the default fate of the ventral endoderm is pancreatic,

and prohepatic signals are required to promote liver bud

formation from the ventral foregut (Wandzioch and Zaret,

2009). Thus, context is a defining factor in patterning the

presumptive pancreatic region.

The influence of the vasculature in coordinating pancreas

formation is evident at e8 in the mouse embryo when the fused

paired aortas displace the notochord adjacent to the dorsal fore-

gut. Using Xenopus embryos, Lammert and colleagues showed

that the dorsal aorta is necessary and sufficient for pancreas,

and specifically endocrine pancreas, specification (Lammert

et al., 2001). The endothelium appears to impact dorsal and

ventral growth differently (Yoshitomi and Zaret, 2004). The dorsal
bud, although specified, fails to expand in a genetic model that

irreversibly depletes the endothelium, but the ventral aspect

proliferates successfully, again highlighting inherent differences

between the requirements for dorsal and ventral pancreas

formation.

Not surprisingly, the vascular niche impacts adult endocrine

organization and function as well. Ectopic overexpression of

vascular endothelial growth factor (VEGF-A) in the pancreatic

epithelium results in islet hyperplasia and the appearance of

insulin-expressing cells in the posterior stomach, while loss of

VEGF-A depletes capillaries from the islet, resulting in defective

insulin secretion (Lammert et al., 2001; Lammert et al., 2003). The

interplay between endothelial and endocrine cells is further illus-

trated by contribution of the endothelium to the islet basement

membrane (Nikolova et al., 2006). From a functional perspective,

close association of the endocrine compartment with the

vasculature is crucial for the ability of b-cells to monitor blood

glucose levels (Brissova et al., 2006). The intimate connections

between endothelia and endocrine cells, both during develop-

ment and in the mature organ, argue that endothelial-derived

signals might also be useful for guiding the differentiation of

stem cell populations toward b-cells in cell culture.

After the initial signaling from the dorsal aorta, the splanchnic

lateral plate mesoderm accumulates around the growing

pancreatic buds and secretes factors required for appropriate

expansion of the organ (Figure 2; Gittes et al., 1996). Active inter-

action between the developing mesenchyme and the vascula-

ture exists, and the dorsal mesenchyme, but not the ventral,

requires signals from endothelial cells to grow (Edsbagge

et al., 2005; Jacquemin et al., 2006). Although the list of known

soluble factors produced by the mesenchyme is short, it was

generally accepted that increased proximity to the mesenchyme

promoted acinar or exocrine differentiation (purple cells, Figure 2)

and inhibited endocrine growth (blue cells, Figure 2; Gittes et al.,

1996; Miralles et al., 1998). Before endocrine differentiation is

initiated, mesenchymal (gray cells, Figure 2) signals promote

the expansion of pancreas progenitor cells (yellow cells, Figure 2;

Attali et al., 2007; Bhushan et al., 2001). While informative, these

explant culture findings also highlight the requirement for in vivo

manipulation of the pancreatic mesenchyme, a task that has not

been accomplished due to the absence of Cre lines that effi-

ciently target this tissue. Future identification of diffusible factors

secreted by the pancreatic mesenchyme should augment our
Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc. 343



Figure 2. The Developmental Niche of the Embryonic Pancreas
During the early stages of development (e10.5–e13.5), multipotent progenitor
cells within the pancreatic epithelium (yellow) expand into the surrounding
mesenchyme (gray) while being populated by the endothelium (red tubes).
Epithelium-mesenchyme, epithelium-endothelium, and endothelium-mesen-
chyme interactions occur simultaneously during pancreas development. The
mesenchyme positively promotes the ‘‘proximal’’ tissue (purple cells), while
being inhibitory to the more ‘‘distal,’’ endocrine progenitor cells (blue), which
have been observed to form closer to the interior of the three-dimensional
organ. Interestingly, the mesenchyme has a positive influence on the pancre-
atic progenitors. Endocrine cells (green) are found in close apposition to the
vasculature, and known to secrete VEGF, which may recruit more blood
vessels to the site of islet formation. The endothelium also exerts a positive
effect on the mesenchyme, as in the absence of the vasculature the mesen-
chyme fails to develop around the dorsal pancreatic bud. Positive interactions
are shown in green and negative interactions in red.
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knowledge of how fate restriction occurs within the developing

pancreatic epithelium.
Signaling within the Developing Pancreas
To date, we have a fairly comprehensive understanding of the

signaling events that regulate pancreas development (Gittes,

2009; Oliver-Krasinski and Stoffers, 2008). Two recurring themes

emerge during pancreas organogenesis with respect to signaling

pathways. First, a pathway may serve temporally distinct func-

tions, and second, dosage of signaling appears critical. Strict

control of the level of signaling likely provides the desirable

outcome during development. It is notable that the dorsal and

ventral aspects of the pancreas receive distinct environmental

cues, yet form the same cohort of cell types. This suggests flex-

ibility in terms of the sequence and type of signals that can be

applied to differentiating cells, including embryonic stem cells,

to enrich for pancreatic fate. The key signaling events that impact

pancreas organogenesis have been reviewed extensively in the

citations above and are outlined briefly below.

FGF, TGF-b, and BMP Signaling

Patterning of the dorsal foregut by the notochord and dorsal

aorta is mediated at least in part by secreted members of the

FGF and transforming growth factor b (TGF-b) signaling path-

ways. FGF10 is required for pancreas development, and loss

of signaling leads to a block in epithelial proliferation (Bhushan

et al., 2001). At least two functions have been attributed to
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FGF signals from the pancreatic mesenchyme. First, ectopic

expression of FGF10 impacts the size of the epithelial progenitor

population via Notch signaling (Hart et al., 2003; Norgaard et al.,

2003). In tissue culture, the mesenchyme has an inhibitory effect

on endocrine fate via increased Notch signaling, indicated by up-

regulation of hairy enhancer of split 1 (Hes-1) expression at the

point of epithelial-mesenchymal contact (Duvillié et al., 2006).

However, a recent report suggests that mesenchymal signaling

boosts the pancreatic progenitor pool and thereby increases

the endocrine population (Attali et al., 2007). These contrasting

observations strongly suggest that the mode of culture can

have a significant impact on the experimental outcome, and

careful interpretation of such approaches is critical. Second,

low levels of FGF signaling repress expression of sonic

hedgehog (Shh) in the foregut epithelium, thereby blocking

Hedgehog (Hh) signaling within the pancreatic domain (Hebrok

et al., 1998). Similarly, combined activities of activin, a ligand

of the TGF-b family, and retinoic acid signaling originating from

the pancreatic mesenchyme regulate appropriate development

within the pancreatic epithelium (Kim et al., 2000; Martı́n et al.,

2005; Molotkov et al., 2005). Later in embryonic development,

TGF-b signaling appears to regulate the endocrine-exocrine

fate decision (Miralles et al., 1998).

The ventral pancreas arises from the lateral endoderm

domain, adjacent to the presumptive liver. Detailed fate mapping

of the early mouse embryo has revealed the existence of

bi-potential foregut progenitors that can give rise to hepatic

and pancreatic cell types (Tremblay and Zaret, 2005). Retinoic

acid signaling from the paraxial mesoderm cells aids in estab-

lishing an anterior-posterior positioning of the liver and pancre-

atic domains within the gut (Kumar et al., 2003). Further

patterning of the ventral foregut occurs through FGF signals

from the cardiac mesenchyme and bone morphogenetic protein

(BMP) signals from the septum transversum mesenchyme,

which promote hepatic fate while suppressing pancreatic fate

(Deutsch et al., 2001; Rossi et al., 2001; Wandzioch and Zaret,

2009). Upon foregut closure, it is thought that cells that move

caudally away from these signals adopt a pancreatic fate, as

tissue explant cultures of a mutant defective in caudal migration

lacked a ventral pancreas (Bort et al., 2004). Thus, an intricate

concert of signaling events impacts the decision to form liver

or pancreas in the ventral foregut.

Hh Signaling

Extensive research has established that Hh signaling needs to be

minimal within the dorsal and ventral pancreatic anlagen during

initiation of organ development. The binding of soluble ligands

Sonic (Shh), Desert (Dhh), and Indian (Ihh) Hedgehog to the cell

surface receptor Patched (Ptch) relieves inhibition on Smooth-

ened (Smo), resulting in intracellular transduction of the signal.

Suppression of Shh, via signaling from the notochord, is critical

for pancreas development (Hebrok et al., 1998; Kim et al.,

2000). In fact, ectopic expression of Shh in the pancreatic endo-

derm results in a dysmorphic pancreas surrounded by intestinal

tissue (Apelqvist et al., 1997). Furthermore, suppression of Shh in

the foregut leads to expansion of the pancreatic field, indicating

that Shh likely functions to repress pancreas fate while

promoting stomach and duodenal fates (Kim and Melton,

1998). Thus, Shh expression generates a molecular boundary

between organs in the fore-midgut area. In contrast, loss of Ihh



Developmental Cell

Review
results in decreased pancreas mass, suggesting that Ihh might

be required for certain aspects of pancreas development,

perhaps in concert with Dhh (Hebrok et al., 2000). Although it

is currently unclear when during development Ihh/Dhh exert their

influence, existing evidence points to a complex interplay of

ligands in determining the appropriate level of signaling within

the pancreas.

Notch Signaling

Notch signaling regulates cell fate decision during pancreas

development by maintaining cells in an undifferentiated, progen-

itor-like state, most likely in conjunction with FGF signaling

through epithelial-mesenchymal interactions (Hart et al., 2003;

Norgaard et al., 2003). Cell surface binding of ligands such as

Delta and Serrate leads to intramembrane cleavage of the

Notch receptor, generating an active intracellular domain that

interacts with the effector RBPJ to activate the Hes family of

transcription factors. The inhibitory effect of Notch signaling on

endocrine development is well documented. Embryonic deple-

tion of components of the Notch pathway leads to the pancreas

becoming overpopulated with endocrine cells, demonstrating

the requirement of Notch in maintaining pancreatic progenitors

(Apelqvist et al., 1999; Jensen et al., 2000). The suppression of

Ngn-3 by Notch, mediated by Hes-1, also highlights a critical

role for the signaling pathway in curbing endocrine development

(Gradwohl et al., 2000; Jensen et al., 2000). Predictably, sus-

tained activation of the Notch pathway has a converse effect

on the developing pancreas, with persistence of progenitors

at the expense of differentiated endocrine and acinar cells

(Hald et al., 2003; Murtaugh et al., 2003). These data under-

score the involvement of the Notch pathway in maintaining

a pool of progenitors that contribute to both endocrine and

exocrine lineages.

The role of Notch in the exocrine compartment presents

a complex picture. Depletion of RBPJ in exocrine tissue results

in a severe loss of pancreatic mass and postnatal death (Nakhai

et al., 2008). Precocious differentiation of endocrine cells in this

model indicates that cells exit the stem cell state and differen-

tiate into endocrine cells inappropriately. Animals lacking

Notch1/2 within the pancreatic epithelium survive with no gross

abnormalities, suggesting a Notch-independent role of RBPJ in

regulating both endocrine and exocrine growth. It is of interest

to note that RBPJ knockout mice do form some acinar cells,

and this may be explained by the presence of the RBPJ

homolog, RBPJL (Beres et al., 2006). Also, although they are

mainly expressed in the pancreatic mesenchyme, one cannot

rule out the contribution of Notch 3 and 4 in the Notch1/2

knockout animals (Apelqvist et al., 1999; Lammert et al., 2000).

Activation of Notch signaling in pancreatic explant cultures

from mouse embryos, either by overexpressing Notch intracel-

lular domain or Hes-1, causes repression of acinar differentia-

tion, further supporting the idea that prolonged Notch activity

inhibits exocrine development (Esni et al., 2004). In summary,

Notch appears to regulate a stem cell niche that, when perturbed

during embryogenesis, leads to precocious differentiation of the

endocrine compartment at the expense of the exocrine lineage.

However, sustained Notch activation in exocrine precursors

blocks acinar differentiation, demonstrating a tightly controlled

temporal and spatial requirement for the pathway in guiding

pancreas cell differentiation.
Wnt Signaling

Several members of the canonical Wnt signaling pathway are ex-

pressed in the developing pancreas (Heller et al., 2002). Conflict-

ing data exist about the role of Wnt signaling during early

pancreas development, perhaps because different pathway

components have been targeted using distinct Cre lines.

Predictably, too much or too little signaling is detrimental to

organogenesis and can result in similar phenotypes. Activation

(through either stabilized b-catenin, the downstream mediator

of canonical Wnt signaling, or loss of function of adenomatous

polyposis of the colon [APC]) or inhibition (through either loss

of b-catenin or misexpression of a frizzled 8 dominant-negative

protein) of the pathway impacts both pancreas size and compo-

sition (Murtaugh, 2008). The importance of timing with regard to

regulation of Wnt pathway activation has been demonstrated

using two different Cre lines that permit temporally distinct

stabilization of b-catenin (Heiser et al., 2006). Activation of Wnt

signaling using an early Cre line results in pancreatic hypoplasia

due to reduction and inappropriate differentiation of progenitor

cells, while activation later during embryogenesis leads to

increased pancreatic mass. Thus, temporal regulation of sig-

naling during development is critical in regulating organ fate

and size. The contribution of non-canonical Wnt signaling to

pancreas development, including the planar cell polarity

pathway, remains to be elucidated.

Wnt signaling also appears to play a role in the adult endo-

crine compartment. The effect of postnatal stabilization of

Wnt signaling in mouse b-cells may depend on the age of the

cells. Increased Wnt activity in younger b-cells produces larger

islets and increased insulin secretion, suggesting that Wnt

signaling plays a role in b-cell proliferation (Rulifson et al.,

2007). In contrast, prolonged Wnt activation causes eventual

breakdown of the b-cell differentiation state accompanied by

a loss of hormone and marker expression (Heiser et al., 2006).

This is reminiscent of ectopic stabilization of b-catenin during

early development, which results in profound loss of Pdx-1

expression (Heiser et al., 2006). Finally, the discovery that poly-

morphisms of TCF7L2, a member of the TCF/LEF family of Wnt

effectors, have a strong genetic association with type 2 dia-

betes further underscores the importance of elucidating the

role of this pathway in adult islet function (da Silva Xavier

et al., 2009; Grant et al., 2006). Thus, Wnt signaling appears

to play multiple roles during pancreas development and in

adult tissue, and its effects are strongly dependent on timing

and context. These issues need to be kept in mind when

designing strategies to promote desired fates in undifferenti-

ated cells ex vivo.

In summary, strict temporal control of signaling events that

trigger intracellular cascades is imperative as they direct cell

differentiation, tissue morphogenesis, and organ function.

Ectopic activation or depletion analyses do not necessarily

provide a clear picture of the events guiding pancreas morpho-

genesis but nevertheless have contributed greatly to our under-

standing. We have come to appreciate the controlled concert of

signaling interactions that occurs during pancreas development

and are slowly peeling away the layers of complexity that govern

these processes. It is important that we understand the impact of

modulating any of these pathways if we are to progress into

a therapeutic arena.
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Transcriptional Control of Gene Specification
Through intense research over the last several years, a hierarchy

of transcription factors regulating pancreas development has

emerged (Wilson et al., 2003). Identifying and manipulating

master regulatory molecules to generate functional b-cells has

become the focus of regenerative medicine aimed at curing dia-

betes. Pancreas and duodenal homeobox gene-1 (Pdx-1) is

a prominent factor in the regulation of pancreas development.

First expressed around e8.5 in mouse, Pdx-1 marks a multi-

potent progenitor population within the pancreatic domain early

in development. Although early pancreas buds still form, Pdx-1

knockout mice completely arrest pancreas organogenesis after

the initial stages (Ahlgren et al., 1996; Jonsson et al., 1994; Off-

ield et al., 1996). Lineage tracing analysis has revealed contribu-

tion of Pdx-1-positive cells to all adult pancreatic fates (Gu et al.,

2002). In the adult pancreas, Pdx-1 is most highly expressed in

b-cells and d-cells, with lower expression in exocrine cells.

Significantly, Pdx-1 directly modulates expression of the insulin

gene, along with other genes required for appropriate b-cell

function such as Glut-2 and glucokinase (Ohlsson et al., 1993).

An essential role for Pdx-1 has been established in humans as

well. Haploinsufficiency of Ipf1, the human homolog of Pdx-1,

leads to maturity onset diabetes of the young (MODY4), an auto-

somal dominant form of diabetes caused by monogenic muta-

tions (Stoffers et al., 1997). Recent reports further emphasize

the important role of Pdx-1 in b-cell formation and function

(Zhou et al., 2008). In fact, it is one of three factors required to

activate b-cell-specific genes within an acinar cell (discussed

below). Thus, Pdx-1 provides essential functions for both

pancreas development and adult islet function.

Although it is critical for pancreas development, Pdx-1 expres-

sion is not restricted to the pancreas and spreads to the distal

stomach, common bile duct and the duodenum. A recent report

demonstrates that Pdx-1 is co-expressed with another tran-

scription factor, Sox17, in the ventral foregut domain that gives

rise to both the biliary and pancreatic primordia. Subsequent

ventral pancreas formation requires the downregulation of

Sox17, whose expression persists in the adjacent biliary tract

and serves to generate a molecular boundary between these

tissues (Spence et al., 2009). Also overlapping with Pdx-1

expression and activated shortly afterwards is p48/PTF1a, a tran-

scription factor whose expression is restricted to the pancreatic

anlage in the foregut. As development proceeds, p48 expression

is confined to the acinar and ductal compartments. p48 null mice

are devoid of all exocrine and most endocrine tissue and exhibit

postnatal lethality (Kawaguchi et al., 2002; Krapp et al., 1998).

p48 is also known to interact with Notch signaling effectors,

thus integrating signaling cues into the transcriptional regulatory

network (Fukuda et al., 2006).

Several transcription factors have been identified that pattern

the gut endoderm toward a pancreatic lineage before Pdx-1 and

p48 expression. These include Hlxb9 (Hb9), Onecut1 (HNF6),

FoxA2, Tcf2, and Hhex (Hex) (Gittes, 2009). Identification of these

factors has enabled elucidation of the earliest steps in pancreatic

formation. Three members of the HNF family of transcription

factors, HNF6/onecut1, vHNF1/HNF1b, and FoxA2, impact

steps from early development to mature pancreatic function.

HNF6, which is expressed in the gut endoderm, is regulated by

vHNF1/HNF1b, expressed throughout the early endoderm.
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HNF6 in turn regulates FoxA2, which, along with FoxA1

(Hnf3a), is a major regulator of Pdx-1 expression during pan-

creas specification (Gao et al., 2008).

In the developing pancreas, Sox9 is expressed between e9.0

and e12.5 in cells that co-express Pdx-1, indicating that Sox9

marks a progenitor population (Seymour et al., 2007). Sox9 inac-

tivation during pancreas organogenesis leads to pancreatic

hypoplasia, further supporting a critical role for this gene.

Binding of Sox9 to the upstream promoter regions of neuroge-

nin-3 (Ngn-3, see below) suggests a regulatory role for Sox9 in

endocrine development (Lynn et al., 2007). Furthermore,

lineage-tracing analysis in which Sox9-positive cells express

GFP provides evidence that Ngn-3-positive cells arise from

Sox9 progenitors (Seymour et al., 2008). At e15.5, approximately

75% of Ngn-3-expressing cells display low amounts of GFP,

indicative of prior Sox9 expression. As for Pdx-1, gene dosage

appears to be critical for Sox9 function, as removal of one allele

leads to endocrine defects in mice (Seymour et al., 2008). Thus,

Sox9 promotes survival and proliferation of progenitors within

the pancreas.

The endocrine program is initiated by one key transcription

factor, Ngn-3. Ngn-3 is a basic helix-loop-helix protein, and

marks the progenitor population of cells fated to form the endo-

crine lineage. Animals lacking Ngn-3 are devoid of islets and die

shortly after birth due to hyperglycemia (Gradwohl et al., 2000;

Gu et al., 2002). Within the embryonic pancreas, Ngn-3 expres-

sion peaks at e15.5, shortly after the secondary transition that

signifies the burst of endocrine specification, and subsequently

declines. Regenerative medicine aimed at generating pancreatic

b-cells has focused on Ngn-3 as a central factor as it is posi-

tioned at the apex of the transcriptional cascade that determines

all endocrine specification.

Given its importance, several studies have attempted forced

expression of Ngn-3 during embryogenesis with the goal of en-

riching for endocrine cells. In general, ectopic expression of

Ngn-3 causes cells to exit from the cell cycle and to express

some endocrine markers (Apelqvist et al., 1999). However, it is

clear that mere overexpression of Ngn-3 does not guarantee

expansion into the b-cell lineage. In fact, in the majority of

studies, increased glucagon- or somatostatin-expressing cells

are observed (Schwitzgebel et al., 2000). Yet again, context

and timing seem to be critical for an appropriate cascade of

events to occur. Forced expression of Ngn-3 at different time

points during development has exposed temporal windows

when embryonic epithelial cells are competent to respond to

Ngn-3 and differentiate into distinct endocrine cell lineages

(Johansson et al., 2007). More recent work has demonstrated

a previously unanticipated role for Ngn-3 in islet maturation

and maintenance of endocrine function (Wang et al., 2009).

Downstream of Ngn-3 there are several transcription factors

that regulate the formation of the various cell types within the

islet. The Pax and Nkx genes, NeuroD, Iroquois-type homeobox

proteins Irx1 and 2, Isl1, and Arx genes all contribute to maintain-

ing the appropriate balance of the different types of endocrine

cells (Wilson et al., 2003). For instance, knockout of Isl1, Pax6

or NeuroD essentially eliminates endocrine formation, and loss

of Nkx2.2 leads to a complete absence of b-cells, with a reduc-

tion in a and PP cells (Sussel et al., 1998). Similarly, Nkx6.1

depletion results in a significant loss of b-cell mass (Sander



Figure 3. Lineage Restriction within the Pancreatic Epithelium
Expansion of the progenitor pool at the tip of the epithelium occurs early during
development. From an uncommitted pool of progenitors (before e10.5, in red)
to multipotent, Cpa-1-positive cells (purple) that give rise to exocrine (orange),
ductal (blue), and endocrine cells (green). Endocrine progenitors go on to
delaminate from the epithelium and cluster with other endocrine cells. It is
believed that distance from the mesenchyme influences the decision of
exocrine versus endocrine lineage.
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et al., 2000). Several of these factors, first expressed during

embryonic development, continue to be expressed in adult

islets, playing critical roles in both formation of the endocrine

compartment and maintenance of function during adulthood.

The Maf family of basic leucine zipper transcription factors has

emerged as a critical mediator of b-cell formation and function

(Nishimura et al., 2006). MafB is expressed in a- and b-cells

early during embryogenesis. As development proceeds,

MafB+Nkx6.1+ cells take on a b-cell identity, and MafB+Nkx6.1�

cells proceed to synthesize glucagon. In developing b-cells,

a switch from MafB to MafA appears to be critical for eliciting

full differentiation. This switch is important as MafA directly regu-

lates insulin transcription, thus playing a central role in regulating

b-cell maturation (Matsuoka et al., 2003).

Pancreatic Progenitors during Embryogenesis
Although cell lineage tracing experiments have revealed the

existence of progenitors within the embryonic pancreas, the

exact genetic signature of such multipotent cells remains poorly

defined. Generating large quantities of progenitors from embry-

onic tissue poses an obvious technical challenge, and efforts

thus far have focused on better defining the transcriptional

blueprint of such a cell. Characterizing a pancreatic stem cell

signature could have considerable applications in regenerative

medicine aimed at curing diabetes as it might allow specific

expansion of such cells from stem cell populations in vitro.

Currently, progenitor cell populations marked by genes such

as Pdx-1 display multipotentiality, although it is a safe assump-

tion that not all Pdx-1-positive cells possess the ability to

generate multiple lineages. Clearly, temporal regulation of

potentiality exists—Pdx-1-positive cells present early in embryo-

genesis (for instance, at e10.5, shown as red cells in Figure 3) are

multipotent while those present later than e12.5 are not. After

e12.5, the Pdx-1-positive lineage becomes restricted in its

potentiality, losing the ability to give rise to the ductal lineage

(Gu et al., 2002). Furthermore, distal tip cells of the expanding

epithelium at e12.5 that coexpress Pdx-1, Ptf1a, c-Myc, and

Carboxypeptidase A1 (represented by purple cells in Figure 3)

are capable of contributing to all cells within the pancreas,

including the ductal (blue), endocrine (green), and exocrine

(orange) cells (Zhou et al., 2007). The tip cells closely contact

the mesenchyme, depicted as a gray ‘‘cap’’ in the schematic,

and perhaps an as yet unidentified molecule signals to the

epithelium, maintaining the progenitor state of the tip (purple)

cells, while the cells more distant from the mesenchyme lose

that influence and become restricted in their fate (Figure 3).

This idea would be consistent with the observation that the

mesenchyme/epithelial ratio is dramatically reversed during the

time when progenitor cells lose their multipotency. Further anal-

ysis of these cells by isolation at distinct time points and gene

expression profiling should provide a clearer picture of the

process by which a progenitor cell loses its multipotency and

commits to a specific lineage.

Approaches to Restoring b-Cell Function—Replenish
or Regenerate?
b-cell dysfunction is the underlying cause of diabetes (either cell

death in type 1 or altered function in type 2). Normalization of

blood glucose levels in diabetic patients serves to prevent debil-
itating complications of the disease. A longstanding objective

of regenerative medicine has been to replace healthy functioning

b-cells in diabetic patients. Whole pancreas and islet transplants

using the Edmonton protocol have reduced the dependence of

type 1 diabetics on exogenous insulin (Shapiro et al., 2006).

However, the limited availability of cadaver tissue means that

transplants are only feasible for a small fraction of patients. Alter-

native approaches to generate b-cells that can be transplanted

to ameliorate hyperglycemia have been actively pursued,

including differentiation of embryonic stem cells, expansion of

existing b-cells, and finally, directing liver and other pancreatic

cells to b-cells.

De Novo Generation of b-Cells

As the adult stem cell population within the pancreas is poorly

defined despite extensive investigation, a more reasonable

approach to generating sufficient quantities of b-cells for trans-

plantation may be differentiation of embryonic stem (ES) cells.

ES cells offer a significant theoretical advantage given their

potential to generate large amounts of a desired cell type. Not

surprisingly, much of the information used to direct human ES

cell differentiation comes from early developmental biology

studies. Application of principles gleaned from early embryolog-

ical signaling events has yielded immature b-cells from human

ES cells in culture (D’Amour et al., 2005, 2006; Kroon et al.,

2008). More recently, small chemical compounds have been

identified that increase the efficiency of definitive endoderm

formation from human and mouse ES cells (Borowiak et al.,

2009). However, even the best-case scenario currently produces

immature, b-like cells, and mature b-cells that express the entire

glucose sensing and insulin-producing machinery have not been

generated. Perhaps what is missing is the significant contribu-

tion that the cellular environment provides during b-cell develop-

ment. Coculture of cells expressing markers of the definitive

endoderm with mesenchymal cells and/or endothelial cells in

order to mimic the developmental niche during embryogenesis

remains to be explored.

In 2006, groundbreaking research demonstrated that four key

transcription factors (Oct3/4, Sox2, Klf4, and c-myc) could

reprogram embryonic and adult fibroblasts into pluripotent
Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc. 347



Figure 4. b-Cell Expansion
During embryonic pancreas development, b-cell
(green) expansion occurs through neogenesis
from progenitors (yellow) within the pancreatic
epithelium (black). In postnatal life, under normal
conditions, b-cell proliferation through the
cyclinD2-CDK complex is the predominant mode
to adjust for changes in insulin demand, e.g.,
during pregnancy or development of obesity.
With age, however, accumulation of tumor
suppressors p16INK4a/p19ARF leads to a block in
the replication potential of b-cells (red) concomi-
tant with a reduction in the epigenome modifiers
Bmi-1 and Ezh2. Although it is unclear what the
role of b-cell replication and senescence is in the
development of human disease such as type 2 dia-
betes, one can envision an islet populated by cells
competent to divide and respond to glucose and
those lacking these abilities (Weir et al., 2009).
Other endocrine cells are not shown for simplicity.
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stem cells that resembled but were not identical to ES cells

(Takahashi and Yamanaka, 2006). The generation of induced

pluripotent stem (iPS) cells has suggested tremendous potential

for reprogramming patient-specific cells for replacement ther-

apy, thereby circumventing ethical considerations surrounding

human ES cell research (Park et al., 2008; Takahashi et al.,

2007; Takahashi and Yamanaka, 2006). Remarkable progress

has been accomplished since the original report describing iPS

cells. While the original study used four transcription factors

mentioned above, the recipe for reprogramming as well as the

methods of introducing factors into cells have rapidly evolved

(O’Malley et al., 2009). Modifications include the elimination of

transcription factors such as c-myc and Sox2, identification of

small chemical compounds that significantly improve the re-

programming efficiency by inhibiting DNA methyltransferases

and histone deacetylases, and the use of adenoviruses and plas-

mids to circumvent the unsuitability of viral integrations into host

DNA. In an attempt to eliminate viral sequences from reprog-

rammed cells, a Cre-based excision method has also been

devised that generates iPS cells that are factor-free. More

recently, proteins have been used to directly reprogram human

fibroblast cells in the absence of any exogenous genetic mate-

rial, albeit inefficiently. The obvious advantage of developing

such approaches is to eliminate any genetic manipulation of

the host cell. Using three transcription factors, type 1 diabetic

patient-specific lines have been generated, providing a model

to further investigate pancreatic disease (Maehr et al., 2009).

While stem cell based therapies promise to usher in a new era

of regenerative medicine, one cannot ignore the hurdles that

such approaches face. One of the largest, and most alarming,

is that of oncogenic potential of stem cells. iPS cells pose

a similar threat, as they have been subjected to extensive re-

programming that may lead to malignant growth when intro-

duced into patients even after differentiation. Realistically, it is
348 Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc.
unlikely that any protocol developed

would convert 100% of a stem cell popu-

lation into the desired cell type. Thus, it is

critical to develop tools that allow purifi-

cation of the required cell type to homo-

geneity. Genetically modifying stem cells
to express fluorescent markers facilitating cell purification is

helpful as an experimental tool and for work with animal models

of diabetes but would not be applicable in a human disease

scenario. Isolation of desired cells via fluorescent activated cell

sorting with antibodies directed against novel cell surface

markers, or new combinations of existing antibodies against

cell surface proteins might be used to exclude undifferentiated

cells with tumorigenic potential. Encapsulation of stem cell-

derived cells before transplantation might be another avenue

to inhibit expansion and distribution of unwanted cells. Finally,

there needs to be an emphasis on ascertaining that stem cell-

derived insulin-producing cells truly function identical to endog-

enous b-cells. At a minimum, newly generated b-cells need to

replicate the many intricate mechanisms that guide secretion

of appropriate amounts of insulin in response to changes in

blood glucose levels, ranging from glucose sensing, insulin

production, storage and secretion, to timely cessation of insulin

release. Thus, although embryonic stem and iPS cells do repre-

sent great opportunity, significant work needs to be done before

transplantation of stem cell-derived tissue into human patients

suffering from diabetes can become an accepted therapy.

b-Cell Proliferation and Regeneration

Recent work in rodents has indicated a previously unappreciated

proliferative capacity for b-cells, an ability that might be explored

to counteract the cell loss or malfunction that occurs during dia-

betes. In particular, altered metabolic demand, such as preg-

nancy or obesity, leads to adaptive changes in b-cell mass

(Figure 4; Gupta et al., 2007; Karnik et al., 2007; Parsons et al.,

1992). Genetic lineage-tracing experiments point to b-cells as

the source of new b-cells in adult animals (Dor et al., 2004;

Teta et al., 2007). However, the age of the animal appears to

play a central role in determining the proliferative capacity of

b-cells, and older animals display a significant decline in cellular

expansion (Figure 4; Georgia and Bhushan, 2004; Rankin and
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Kushner, 2009; Teta et al., 2005; Tschen et al., 2009). In mice,

b-cells are believed to be long-lived, and in one-year-old

animals, only 1 in 1400 b-cells divide in a 24 hr period (Teta

et al., 2005). Ectopic expression of growth-promoting factors

in b-cells does allow adult cells to enter the cell cycle, and

such expansion translates into functional regulation of glucose

levels, resulting in hypoglycemia in animals (Garcia-Ocaña

et al., 2000; Vasavada et al., 2000). Adult b-cells have a limited

lifespan in culture and undergo dedifferentiation, with loss of

insulin expression. Attempts have been made to manipulate

the culture of these cells to block dedifferentiation (Bar et al.,

2008). However, it has not yet been possible to identify culture

conditions that allow proliferation of b-cells while maintaining

their full functional state.

Significant progress has also been made in detailing the

molecular machinery that regulates cell cycle progression in b-

cells (Cozar-Castellano et al., 2006). The cyclin d2-CDK4

complex is important for b-cell mitotic entry, as mice depleted

of either component develop severe hyperglycemia accompa-

nied by a failure of b-cell expansion (Georgia and Bhushan,

2004; Kushner et al., 2005; Rane et al., 1999). Inhibitors of

cyclin-CDKs, including p27, also impact b-cell proliferation

(Georgia and Bhushan, 2006). Recently, epigenetic modifiers

have been identified that block inhibitors of b-cell replication

early in life. The p16Ink4a/p19Arf locus has emerged as a repressor

of b-cell replication (Krishnamurthy et al., 2006). Bmi-1 and Ezh2,

both of which form part of histone modification polycomb

complexes, inhibit activity of p16Ink4a/p19Arf leading to active

b-cell replication (Chen et al., 2009; Dhawan et al., 2009).

In addition, several in vivo models of b-cell regeneration have

been developed to investigate the ability of b-cells to expand in

adult animals. In one model, c-Myc overexpression results in

synchronous cell death in greater than 90% of b-cells, followed

by complete regeneration, presumably through b-cell neogene-

sis (Cano et al., 2008). Similarly, a model that expresses the diph-

theria toxin to induce cell death depletes close to 70% of b-cells,

which subsequently regenerate by replication to restore normo-

glycemia (Nir et al., 2007). Although thorough analyses of

these models of b-cell regeneration strongly point to apoptosis

of b-cells followed by regeneration, it is difficult to rule out that

insulin expression may be downregulated in b-cells during

such manipulations and thus a dedifferentiated state might be

overlooked. This possibility is further suggested by the presence

of Glut2+/insulin� cells in a model of b-cell regeneration that

activates caspase 8 in b-cells, which could be construed as

evidence for either dedifferentiated b-cells or progenitor cells

within islets (Wang et al., 2008).

The current systems used to stimulate b-cell regeneration are

clearly artificial. However, if we can mimic the cellular state that

permits b-cell entry into the cell cycle in a robust manner, we may

be able to use b-cells as source for generating more insulin-

producing cells. Type 2 diabetes is a progressive disease, and

as the ability of b-cells to expand diminishes over time, under-

standing the cell cycle machinery and how to manipulate it

may be critical for increasing the likelihood of success for future

therapies.

Manipulating Adult Tissue to Generate b-Cells

It is now evident that terminal differentiation, long thought to be

an irreversible process, can be reversed in cells from an adult
animal. Consequently, the field of regenerative medicine has

seen several attempts to coax differentiated cells toward

pancreatic fates. Cellular plasticity, in the context of a fully differ-

entiated cell, is defined as the ability of that cell to change its

epigenome and adopt a novel, functionally distinct fate. An adult

cell can in principle dedifferentiate into a progenitor-like state

with broader fate potential or switch fate to another lineage

without going through a multipotent state. Terms such as trans-

differentiation or transdetermination have been employed to fit

scenarios where adult cells are coerced into expressing genes

that mark a different fate, depending on how distinct the new

fate is from the original one. Identifying cells amenable to such

types of manipulations continues to be a much sought after

goal, even though the precise mechanism of these changes

remains murky.

Liver to Pancreas. Not surprisingly, one organ that has been

explored as a source of reprogrammable cells is the liver. The

liver and pancreas share their endodermal origin, and the exis-

tence of a bipotential progenitor cell with the ability to give rise

to hepatic or pancreatic fate is now generally accepted (Chung

et al., 2008; Deutsch et al., 2001; Wandzioch and Zaret, 2009).

Several attempts have been made to generate pancreatic cell

types from adult liver cells by overexpression of pancreas-

specific transcription factors (Ferber et al., 2000; Kaneto et al.,

2005; Wang et al., 2007). Adenoviral delivery of Pdx-1 via

systemic infection, either alone or in combination with additional

soluble factors (EGF and nicotinamide) activates insulin expres-

sion in liver cells both in vivo and in hepatocytes isolated from

fetal or adult liver. Such treatment alleviates the hyperglycemia

induced by streptozotocin (STZ) treatment that abolishes b-cells,

providing evidence for insulin expression and secretion in hepa-

tocytes (Ber et al., 2003; Ferber et al., 2000; Sapir et al., 2005).

However, manipulating a gene as far upstream in the regulatory

network as Pdx-1 is likely to lead to adverse effects. Thus, it is

not surprising that other groups report the induction of the

exocrine lineage within the liver, or complications such as fulmi-

nant hepatitis (Kojima et al., 2003; Miyatsuka et al., 2003).

Until recently, the identity of the hepatic cell that adopted

a pancreatic fate had remained elusive. Yechoor et al. (2009)

now report that Ngn-3 overexpression in the liver induces

expression of several islet hormones concomitant with decrease

of albumin, which indicates loss of hepatic identity. Significantly,

lineage-tracing analysis strongly suggests that the cells that

possess this capacity are the oval cells. The authors propose

that the oval cells within the liver play the role of facultative

stem cells that retain the ability to adopt pancreatic endocrine

fates. Rescue of STZ-induced hyperglycemia in animals injected

with adenoviruses expressing Ngn-3 further indicates at least

some functional relevance of this approach. Ectopic expression

of other more downstream factors such as NeuroD, in combina-

tion with factors promoting b-cell growth such as betacellulin,

also appears to alleviate the hyperglycemia induced by STZ

treatment (Kojima et al., 2003). Thus, modulating factors more

specific to the endocrine lineage rather than Pdx-1 may decrease

the possibility of inducing the formation of cells of the exocrine

compartment (Ferber et al., 2000; Kojima et al., 2003).

Pancreatic Plasticity. The inherent plasticity of the adult

pancreatic organ is an area of great interest. A common

approach to identifying progenitor cells within the adult pancreas
Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc. 349



Figure 5. Fate Manipulation within the Adult
Pancreas
In a ductal injury model such as pancreatic ductal
ligation (top schematic), normal duct cells (yellow),
or duct-associated cells (orange) adopt a pro-
genitor state (purple) and upregulate Ngn-3
expression that correlates with increased b-cell
formation, depicted by the green arrow. In an
acinar cell injury model (left schematic), acinar
cells (blue) undergo dedifferentiation (purple) (for
e.g., upon caerulein treatment) followed by
recovery (red arrow) and thus regeneration. Intro-
duction of key transcription factors such as
Ngn-3 and MafA into such dedifferentiated cells,
shown in the bottom schematic, might promote
b-cell fate. A third scenario is of direct acinar fate
change (right panel). Ectopic expression of
Pdx-1, Ngn-3, and MafA in the adult pancreas
redirects acinar cells to adopt an identity resem-
bling an endocrine b-cell (green), although these
cells fail to cluster with other endocrine cells.
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is to induce damage to trigger regeneration. Although pancreatic

ducts are believed to harbor precursors for endocrine and

exocrine lineages during embryonic development, whether

such precursors are present in adult ducts is unclear. One model

to investigate this question involves depriving rats and hamsters

of copper, which leads to a greater than 80% loss of the acinar

compartment, and results in subsequent repopulation of the

pancreas with hepatocytes (Rao et al., 1989). A possible expla-

nation for this could be the existence of a pancreatic ‘‘stem-

like’’ cell capable of giving rise to hepatocytes and originating

from duct-like structures. Alternatively, the origin of these cells

might lie within the biliary tree, which is known to harbor cells

that can contribute to the endocrine lineage (Dutton et al.,

2007; Eberhard et al., 2008). The biliary epithelium possesses

the ability to form endocrine cells in the absence of Hes-1, which

represses Ngn-3 expression (Sumazaki et al., 2004). It would be

interesting to investigate whether the cells that appear in the

pancreas after copper deprivation have the ability to form

pancreatic endocrine cells, for instance by introducing factors

such as Ngn-3, instead of hepatocytes.

A large body of data exists suggesting that pancreatic ductal

cells can give rise to insulin-producing cells in vitro (Bonner-

Weir et al., 2000; Gao et al., 2003; Ramiya et al., 2000). In culture,

pancreatic ductal cell lines can be induced to express islet

hormones upon exposure to exendin-4/GLP1, activin A, and

HGF or betacellulin. Infecting pancreatic ductal cell lines with

Ngn-3-expressing adenoviruses also initiates the endocrine

program, pointing once again to the ability of these cells to

change fate (Gasa et al., 2004; Heremans et al., 2002). Evidence

is accumulating that a ‘‘normal’’ duct cell can dedifferentiate and

assume the expression profile of embryonic progenitors

(Figure 5). Bonner-Weir and colleagues propose that sustained

proliferation of the adult ductal epithelium after injury yields

a pool of less differentiated cells that can be coaxed toward an

endocrine fate. In the absence of additional cues, perhaps these

cells revert back to the ductal phenotype. A carbonic anhydrase
350 Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc.
II-Cre line marking duct cells in a pancreatic duct ligation (PDL)

model of injury labels islets and acinar cells (Inada et al., 2008).

Although these data support the idea that duct cells can give

rise to both acinar and endocrine cells, the possibility of misex-

pression in other cell types cannot be ruled out, as a human frag-

ment of the CAII promoter was used to direct Cre expression. In

another duct ligation model of pancreatic injury, the ability of

cells located in the duct lining to differentiate into islet cells has

been reported (Xu et al., 2008). Ligation of the duct leading to

the tail of the pancreas, while leaving the head of the organ

untouched, leads to acinar degeneration along with duct expan-

sion. Increased Ngn-3 expression within duct cells (schematized

as purple cells with elevated Ngn-3 expression in Figure 5, top

panel) concomitant with islet hyperplasia indicate that b-cell

expansion following such a manipulation progresses, at least

in part, through Ngn-3-positive intermediates that originate

from the ducts (yellow cell) or cells within the duct lining (orange

cell). Furthermore, Pdx-1 expression is induced in ducts after

injury through partial pancreatectomy (Sharma et al., 1999). Alto-

gether, these data support two hypotheses—either the ducts

harbor a pool of cells that behave as stem cells, or the ducts

are capable of dedifferentiating into a more progenitor-like state

in culture or upon injury. To develop this type of approach as

a treatment option, it would be critical to be able to expand the

duct progenitor population in the absence of injury, perhaps

using either a gene therapy approach or small chemical

compounds.

Directly challenging the models discussed above, Solar et al.

(2009) report that mature pancreatic duct cells do not contribute

to either the endocrine compartment or the acinar lineage. The

authors carry out lineage tracing using an HNF1bCreER mouse

model that labels duct cells in both embryonic and adult tissues.

Using two distinct approaches that allow for regeneration of

b-cells (either using PDL or depleting endogenous b-cells using

alloxan followed by treatment with EGF and gastrin), the report

demonstrates no contribution of duct cells, as defined by



Developmental Cell

Review
HNF1b-positive cells, toward the b-cells that repopulate the

pancreas. Although the analysis is convincing and the data

support the conclusions, there are, as usual, some caveats

with the experimental set up. The authors acknowledge that

the efficiency of cells expressing the Cre recombinase is not

100%, possibly due to resistance of a subset of ductal cells to

labeling. The rapid emergence of b-cells after PDL argues

against a small stem cell niche or simply b-cell expansion.

Furthermore, Xu et al. (2008) provide evidence that Ngn-3

progenitors, and therefore the process of neogenesis, does

play a part upon injury related regeneration. Although lineage-

tracing was not conducted in this study, the proximity of the

Ngn-3 expressing cells to the ducts point to duct or duct associ-

ated cells as the culprit for the source of progenitors. Identifying

more markers that allow labeling of the various types of duct cell

populations should aid in deciphering the source of cells that

contribute toward the different lineages in the pancreas.

By far the largest component of the pancreas is the acinar cell

compartment, and this therefore provides a sizable source of

cells for potential manipulation toward the endocrine lineage.

Acinar cells have shown the potential to express b-cell or duct

cell markers, for example, in studies that involve exposing

them to EGF and nicotinamide, or TGF-a, but these analyses

are currently restricted to cell culture manipulations (Means

et al., 2005; Minami et al., 2005). Upon induction of exocrine

damage via treatment with caerulein, a cholecystokinin analog

that elicits precocious secretion of digestive enzymes, acinar

cells suppress exocrine gene expression and reactivate

a progenitor program by expressing genes like Pdx-1, Sox9,

FoxA2, and members of the Notch pathway including Hes-1,

suggestive of a progenitor-like state (conversion of normal acinar

cells in blue into a dedifferentiated state shown in purple in

Figure 5, left panel; Jensen et al., 2005; Morris et al., 2010).

This apparent dedifferentiation is transient, as acinar cells regen-

erate within three to seven days, with no contribution toward

a ductal lineage (recovery indicated by the red arrow in Figure 5,

left panel). The ability of acinar cells to change fate toward an

endocrine lineage has been challenged by lineage tracing in

different injury models that demonstrate no contribution to either

duct or endocrine lineage (Desai et al., 2007). Under these condi-

tions, an acinar cell only begets an acinar cell, and no b-cell or

ductal cell scores positive for the lineage-tracing marker. It

cannot be ruled out, however, that Hes-1 expression in the dedif-

ferentiated acinar cells blocks the initiation of the endocrine

differentiation program under these conditions. Introduction of

Ngn-3, for instance, might enable bypass of such interference

and allow for fate change to occur (Figure 5, lower panel). In

fact, inhibition of Notch signaling in rat acinar cultures promotes

b-cells neogenesis, emphasizing the role of this pathway as an

inhibitor of endocrine differentiation (Baeyens et al., 2009).

A recent paper reported exciting new data unveiling the ability

of acinar cells to be remodeled into insulin-producing b-cells

in vivo (Zhou et al., 2008). Using adenoviral injections directly

into the pancreas, a set of three transcription factors, Pdx-1,

Ngn-3, and MafA, appear sufficient to induce b-cell formation

(Figure 5, right panel). Remarkably, the new b-cells express

several b-cell-specific genes including NeuroD, Nkx2.2, and

Nkx6.1, possess morphologic characteristics of b-cells, and

significantly, correlate with a lowering of blood glucose in dia-
betic mice. Most interestingly, the insulin-expressing cells

appear to arise from acinar cells, without cell replication or

transitioning through a dedifferentiated state, thus undergoing

direct lineage alteration. One caveat is the absence of physio-

logical analysis of function in the newly formed b-cell. The

correction of induced hyperglycemia is partial, and thus these

cells might not represent fully functional b-cells. In addition, the

acinar-derived b-cells do not aggregate to form the classical

islet morphology. It is also possible that the percent of acinar

cells that adopt the b-cell fate is too low, i.e., the process of

fate change is inefficient. Of course, this approach is far from

being ready for human application, but it does suggest the

exciting possibility of manipulating the relatively abundant acinar

cell population from cadaver donors to generate b-cells for

transplantation.

There are several obvious differences between the ‘‘injury’’

and ‘‘viral induction’’ models. It is likely that the transient

Pdx-1-expressing population generated upon caerulein treat-

ment requires additional cues for efficient lineage modification

toward endocrine cell fates. The absence of such cues would

allow the dedifferentiated cells to revert back to an acinar lineage

(Figure 5, left panel). Using viral infection of the pancreas in vivo

to ectopically express regulatory factors yields a low rate of

acinar derived b-cells. One explanation could be that the

pancreas harbors a population of ‘‘less’’ differentiated acinar

cells. The centroacinar cell is of interest, as it lies at the interface

of the acinar and ductal system and exhibits active Notch

signaling, indicative of maintaining a progenitor status (Miya-

moto et al., 2003). Generating and using a Hes-1-CreER line to

label centroacinar cells for lineage-tracing analysis would shed

light on the lineage pliability of these cells. Furthermore,

increasing the population of acinar cells that are ‘‘pliable,’’

perhaps through injury models such as caerulein followed by

ectopic expression of important transcription regulators, might

lead to greater success in revealing their potential to form b-cells.

The obvious advantage of expanding this approach is to circum-

vent the ethical issues that haunt human embryonic stem cell

research. However, in situ dedifferentiation or lineage maneu-

vering of acinar cells is not feasible for therapy, as injection of

viral vectors into the pancreas is likely to result in pancreatitis

phenotypes or potentially even pancreatic cancer. Thus, ex

vivo manipulation of acinar cells is more likely the process to

be pursued for therapeutic potential.

Differentiation is characterized as a progressive restriction in

developmental potential of a cell. Complex regulatory networks

ensure the transition of a multi-potent progenitor cell to a differ-

entiated cell with a unique functional identity. Thus, at face value,

it seems naive to assume that manipulating individual molecules

should result in fate redirection. Also, in the absence of stringent

lineage tracing, the identity of the cell population being modified

remains obscure. For true lineage alteration to occur, the original

identity of an adult cell needs to be repressed and the entire

complement of epigenetic changes associated with the desired

lineage put in place. In case of b-cells, merely expressing insulin

is not sufficient. The glucose sensing and insulin-secreting

machineries also need to be active. Furthermore, a significant

concern is achieving regulated expression rather than overex-

pression. This is illustrated by the effect of sustained Pdx-1

expression in the pancreas (in all cell types), which leads to
Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc. 351
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acinar-to-ductal metaplasia (Miyatsuka et al., 2006). Thus,

uncontrolled activation of factors that define and maintain the

progenitor state during development may not be a successful

strategy for adult tissue manipulation. Identifying a subset of

regulatory factors that could be manipulated in a controlled

manner within the organ seems a more rational approach to re-

modeling cells within a tissue.

Pancreatic Cancer—the Dark Side of Plasticity
Plasticity in adult pancreatic cells not only provides a unique

opportunity to expand the number of ‘‘desired’’ cell types, e.g.,

insulin-producing b-cells, but also carries risks with regard to

initiation of neoplastic transformation. Injury to pancreas results

in exocrine damage and inflammation, hallmarks of acute or

chronic pancreatitis. Pancreatitis has been realized as one of

the risk factors for developing pancreatic adenocarcinoma

(PDA), a lethal disease and the fourth leading cause of cancer

death in the United States (Jemal et al., 2009). Short-term

pancreatic injury via caerulein treatment results in temporary

dedifferentiation of acinar cells that is quickly resolved with cells

reassuming acinar identity (Jensen et al., 2005). However,

a similar injury in tissues expressing activating mutations in

Kras, the predominant oncogene in PDA, changes the redifferen-

tiation course of the dedifferentiated acinar cells. Under these

conditions, acinar to ductal metaplasia occurs, followed by the

formation of pancreatic intraepithelial neoplasia (PanIN), lesions

that lead to PDA over time (Carriere et al., 2009; Guerra et al.,

2007). Although the exact mechanisms by which activated

Kras signaling converts benign acinar regeneration into neo-

plastic transformation have not been fully elucidated, recent

studies suggest that b-catenin/canonical Wnt signaling is a crit-

ical modulator of acinar regeneration that is not engaged in

Kras-mediated acinar-ductal metaplasia (Morris et al., 2010).

Furthermore, other embryonic signaling pathways implicated

in pancreas development, including Notch and Hedgehog

signaling, also appear to play crucial roles during acinar regener-

ation and neoplastic transformation (De La O et al., 2008; Miya-

moto et al., 2003; Pasca di Magliano et al., 2006). Thus, while

pancreatic injury might provide a previously unexplored opportu-

nity to convert acinar cells into functional b-cells, it is important to

place strong emphasis on ensuring that this regenerative

response cannot be hijacked to result in the formation of cancer

progenitors.

Perspective
Although the discovery of insulin transformed diabetes into

a manageable chronic condition, insulin replacement therapy is

proving insufficient as a means of preventing all of the side

effects associated with long-term irregularities in glucose levels.

Our search for large supplies of b-cells is far from over, and our

quest is complicated by the fact that the mature b-cell is a highly

specialized cell in which glucose sensing and insulin secretion

functions are finely balanced. New data are rapidly emerging

that point to the acinar cell as a source of tissue that may be

open to manipulation for production of b-cells. Clearly, the

many years of research that have been invested in under-

standing the pancreatic developmental program provided

a knowledge base that was crucial for such research to take

place. Development of new technologies that might aid, for
352 Developmental Cell 18, March 16, 2010 ª2010 Elsevier Inc.
example, in improving efficient and regulated expression of

key transcription factors in the acinar cell of a pancreas that

lacks functional b-cells will be an encouraging step toward

eliminating the dependence of diabetic patients on exogenous

insulin.
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