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Integrative classification of human coding and noncoding 
genes through RNA metabolism profiles
Neelanjan Mukherjee1, Lorenzo Calviello1,2, Antje Hirsekorn1, Stefano de Pretis3, Mattia Pelizzola3 & Uwe Ohler1,2,4

Pervasive transcription of the human genome results in a heterogeneous mix of coding RNAs and long noncoding RNAs 
(lncRNAs). Only a small fraction of lncRNAs have demonstrated regulatory functions, thus making functional lncRNAs difficult 
to distinguish from nonfunctional transcriptional byproducts. This difficulty has resulted in numerous competing human lncRNA 
classifications that are complicated by a steady increase in the number of annotated lncRNAs. To address these challenges,  
we quantitatively examined transcription, splicing, degradation, localization and translation for coding and noncoding  
human genes. We observed that annotated lncRNAs had lower synthesis and higher degradation rates than mRNAs and  
discovered mechanistic differences explaining slower lncRNA splicing. We grouped genes into classes with similar RNA 
metabolism profiles, containing both mRNAs and lncRNAs to varying extents. These classes exhibited distinct RNA metabolism, 
different evolutionary patterns and differential sensitivity to cellular RNA-regulatory pathways. Our classification provides an 
alternative to genomic context-driven annotations of lncRNAs.

Pervasive transcription of the human genome has spurred efforts to 
identify and functionally characterize lncRNAs1. lncRNAs are non-
coding transcripts longer than 200 nt; this length cutoff is an ad hoc 
convention to distinguish lncRNAs from well-characterized small 
noncoding RNAs, such as microRNAs (miRNAs), small nuclear and 
nucleolar RNAs (snRNAs and snoRNAs, respectively) and tRNAs2. 
Contemporary annotations include many tens of thousands of this 
expanding heterogeneous group of RNAs3.

Like mRNAs, lncRNAs are transcribed by RNA polymerase II 
(pol II), 5′-capped and frequently spliced and polyadenylated4. The 
defining characteristic of lncRNA, the absence of a translated open 
reading frame (ORF), has received scrutiny, given lncRNAs’ exten-
sive polyribosomal association and detection in ribosome profiling 
experiments5–9. Many lncRNAs exhibit tissue-specific expression, 
thus suggesting that they are subject to regulation10,11. However, tran-
scription is a low-fidelity process12 constrained by cell-type-specific 
chromatin architecture and transcription-factor expression, and it is 
therefore difficult to discriminate ‘transcriptional noise’ from func-
tionally important spatiotemporally restricted expression. Noncoding 
transcripts originating from regulatory regions have been shown to 
indicate activation status; many such transcripts have been annotated 
as lncRNAs but are actively degraded by nuclear surveillance mecha-
nisms and are unlikely to have trans-regulatory functions13.

Only a small proportion of human lncRNAs have known regulatory 
functions14. It remains unclear which lncRNAs are likely to be func-
tional as distinct RNA species interacting with proteins and nucleic 
acids15; which lncRNAs may indicate or influence transcriptional 
activity via the process of transcription itself but not by acting as 
functional RNAs16; and which lncRNAs are nonfunctional byproducts 

of a stochastic cellular environment. Attempts to classify lncRNAs rely 
on sequence conservation, chromatin modifications, or the genomic 
position and orientation relative to coding genes17. However, the  
heterogeneity in form and function of lncRNAs remains a major 
obstacle that makes it difficult to prioritize lncRNAs for functional 
characterization and to generalize knowledge derived from individual 
lncRNAs to other lncRNAs.

RNAs that share common steps of RNA biogenesis and matura-
tion often have similar functions, as in the case of miRNAs, snRNAs  
and tRNAs. This idea is generalizable to mRNAs, if common RNA 
metabolism behavior is assumed to reflect common regulation by 
trans-acting factors, which have been shown to coordinate the expres-
sion of mRNAs encoding functionally related proteins18. Because 
lncRNAs (and small noncoding RNAs) do not encode a separate mol-
ecule and are themselves the final actors, their biogenesis and matura-
tion necessarily constrain their functional capacity, which we define 
on the basis of whether they are functional and the types of regulation 
in which they may participate. (Thus, lncRNAs exhibiting similar 
RNA metabolism behaviors may have similar functional capacities.) 
Therefore, we collected and generated transcriptome-wide profiles of 
six hallmarks of RNA metabolism. Quantitative examination of tran-
scription, splicing, degradation, localization and translation revealed 
differences between annotated lncRNAs and mRNAs. These observa-
tions motivated us to perform an annotation-agnostic unsupervised 
classification of RNAs on the basis of their full RNA metabolism 
profiles. We identified seven classes, each of which contained both 
mRNAs and lncRNAs to different extents and exhibited distinct 
evolutionary patterns and fitness constraints, differential sensitiv-
ity to cellular RNA-regulatory pathways and different relationships  
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among the steps of RNA metabolism. For lncRNAs, these classes pro-
vide a roadmap that indicates which transcripts may be functional and 
broadly suggests the types of regulation that they may perform.

RESULTS
Differences in expression and maturation between coding  
and noncoding genes
We performed strand-specific paired-end RNA sequencing in  
triplicate by using synthetic spike-in RNAs in human embryonic 
kidney cells (HEK293 cells, average depth of ~31 million uniquely 
aligned reads) to determine average RNA copy number per cell (cpc) 
for 27,803 genes (Supplementary Fig. 1a–c). We detected a low-
expression regime (n = 13,685 genes) and a high-expression regime  
(n = 14,118 genes) with average RNA cpc values of 0.05 and 11.45, 
respectively, results typical of RNA-seq experiments. Protein-coding 
genes exhibited higher expression than lncRNAs and pseudogenes 
(Fig. 1a), an expected observation that we confirmed by examina-
tion of 101 different tissues and cell lines from The Encyclopedia of  
DNA Elements (ENCODE) (Supplementary Fig. 1d).

Unlike mRNAs, which can be translated numerous times, lncRNAs 
must be expressed at sufficient levels for the RNA products to function 
in a given cellular context. Only 20% of lncRNAs were in the abun-
dant population, compared with 68% of coding genes. In agreement 
with the concept that introns can enhance expression19, only 2.6% 
of protein-coding genes in the high-expression regime were intron-
less, compared with 32% and 51.9% of lncRNAs and pseudogenes, 
respectively (Supplementary Fig. 1e,f). Furthermore, multiexonic 
lncRNAs were less robustly processed (Fig. 1b; estimation of primary 
and mature expression in Online Methods). These results confirmed 
known differences in human steady-state mature-RNA levels10 and 
RNA maturation between coding and noncoding RNAs, and most 
lncRNAs were not expressed at a cpc consistent with a trans-acting 
function for the RNA product. Because our cpc estimates were derived 
from a population of cells, we cannot exclude that low-cpc RNAs 
represent high expression in a minor subset of cells. However, recent 
single-molecule imaging of numerous lncRNAs has indicated that low 
expression is not explained by such ‘jackpot’ cells20.

Progressive metabolic labeling of RNA
To determine the mechanistic basis of the differences in behavior 
between mRNAs and lncRNAs, we generated progressive snapshots 
of RNA production and maturation by metabolic labeling of RNA 
with 4-thiouridine (4SU)21. After treating cells with 4SU for 7.5, 15,  
30, 45 or 60 min, we purified total RNA and subsequently biochemi-
cally separated and strand-specifically paired-end sequenced newly 
transcribed 4SU-labeled RNAs; we performed the experiment three 
different times on three different frozen HEK293 stocks (Fig. 1c, 
average depth of 18 million uniquely mapping read pairs). The frac-
tion of primary transcripts in 4SU samples was higher than that 
in other samples representing different stages of RNA maturation, 
including genomic run-on sequencing (GRO-seq)22 and RNA-seq of 
cellular fractions (nuclear, cytoplasm, cytosol and polyribosomal23,24)  
(Supplementary Fig. 1g). We detected coverage for 79.6 million 
nucleotides in the 4SU samples; in comparison, 171.7 million nucle-
otides of the human genome are annotated in GENCODEv19 (ref. 25)  
(Supplementary Fig. 1h). Unstable regions, such as introns of cod-
ing genes and lncRNAs (Supplementary Fig. 1i–m), exhibited the 
most pronounced coverage differences between 4SU labeling and 
GRO-seq. Overall, the two methods were comparable to analysis 
of RNA synthesis (R = 0.83), but 4SU labeling but did not require  
in vitro perturbation of nuclei.

We inferred synthesis, processing and degradation rates for genes 
throughout the transcriptome by comparing primary and mature 
RNA concentrations of 4SU-labeled RNA and total RNA by using 
INSPEcT26. The inferred rates from different labeling times were pre-
cise and consistent with the observed behavior of individual genes 
(Fig. 1d–f). Scrutiny of these loci revealed similar time-dependent 
increases in the production of mature mRNA for the well-transcribed 
genes ACTB and MYC (Fig. 1g,h). Because ACTB had higher steady-
state levels than those of MYC, we were able to correctly infer that 
ACTB mRNA was more stable than MYC mRNA. We detected pro-
gressive increases in the production of the lncRNAs XIST and GAS5,  
though they exhibited less complete intron excision (Fig. 1i,j). The 
two lncRNAs exhibited slower splicing of individual introns and lower 
gene-level processing rates than those of the two coding genes, thus 
suggesting differences in splicing mechanisms.

Splicing differences between coding and noncoding genes
Together with previous studies indicating that lncRNAs are less effi-
ciently spliced27, the differences that we observed for intron removal 
prompted us to analyze splicing differences in the excision of individ-
ual introns from lncRNAs and from coding genes. For each junction 
with sufficient coverage across all labeling time points (n = 21,782), 
we calculated an intron-centric splicing value, θ (Supplementary 
Fig. 2a), which ranged from 0 (unspliced) to 1 (spliced). We iden-
tified three clusters of introns representing fast, medium and slow 
intron-excision dynamics (Fig. 2a). Introns of lncRNAs were 17.3 
times more likely than introns of coding genes to belong to the slow 
class (Fig. 2b). Additionally, the slow class was 8.3 times more likely 
to contain exons exhibiting higher skipping (low spliced-in values, Ψ; 
Online Methods) (Fig. 2c). Mirtrons were spliced out more quickly 
than introns not containing small RNAs, whereas snoRNA-containing 
introns were spliced more slowly (Fig. 2d).

To investigate the mechanisms underlying the different splicing 
behavior, we used features corresponding to nucleotide composition 
and length, canonical splicing signals and exonic-splicing-regula-
tory elements as well as RNA metabolism (synthesis and decay on 
the gene level), in a random forest classifier trained to discriminate 
between the fast and slow intron classes (Supplementary Fig. 2b). 
The model was trained by using all features as well as separately 
excluding rates derived from the metabolic labeling. Both models 
had similar performance, with a modest improvement when meta-
bolic features were included (area under receiver operating char-
acteristic curve from 0.79 to 0.82; Fig. 2e). We found that similar 
features were important in an orthogonal approach using individual 
splicing models to predict θ for coding introns, lncRNA introns, 
snoRNA host introns and mirtrons by using random forest regres-
sion (Supplementary Fig. 2c–f).

The distance of introns from the transcription start sites (TSSs) and 
from the transcription end sites (TESs) were important physical features 
for prediction and positively correlated with splicing speed (Fig. 2f).  
The GC content of introns and flanking exons was more important 
for the prediction of fast introns and was significantly lower for fast 
introns and flanking exons. Regarding canonical splicing signals, fast 
introns exhibited stronger splice sites and weaker branchpoints but 
similar polypyrimidine-tract scores. Upstream and downstream exons 
flanking fast introns, compared with slow introns, exhibited signifi-
cantly higher levels of ESEs and lower levels of ESSs (P < 0.05), a result 
consistent with recent evidence of the use of purifying selection to 
preserve exonic splicing signals in lncRNAs28,29.

Higher synthesis rates for genes containing slow introns (Fig. 2f, 
‘syn’) prompted us to examine the phosphorylation status of serine  
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Figure 1 Progressive metabolic labeling of RNA. The average RNA cpc for endogenous genes was estimated from the fit determined for External RNA 
Controls Consortium (ERCC) spike-in RNAs. (a,b) Violin plots representing the density of the distribution with embedded box-and-whisker plots for the cpc 
of mature RNA for coding genes (n = 18,404), pseudogenes (n = 4,124) and lncRNAs (n = 5,275) (a) and the ratio of mature cpc values versus primary 
cpc values for the high-expression population of coding genes (n = 12,158), pseudogenes (n = 282) and lncRNAs (n = 713) (b). Center line, median; 
upper and lower hinges, first and third quartiles; whiskers, 1.5× interquartile range. (c) Time points of progressive 4SU labeling. The longer the labeling 
time (lab), the darker the blue line depicted (i.e., 7.5 min is the lightest blue, and 60 min is the darkest blue). All experiments were performed in triplicate 
(on three independent cell cultures). (d–f) Rates of synthesis (d), processing (e) and degradation (f) of ACTB, MYC, XIST and GAS5 for each of the five 
labeling times calculated with INSPEcT. The y axis represents the full range of values for each rate, and the dashed line is the average. For each of the five 
labeling time points (represented by different symbols), triplicates were used to estimate rates for all genes depicted. Chr, chromosome. (g–j) Coverage 
(library size in normalized fragments per million) of 4SU data (light to dark blue represents short to long labeling times, as depicted in c, and total RNA 
(green) profiles for ACTB (g), MYC (h), XIST (i) and GAS5 (j). Source data for a,b,d–f are available online.

residues in the C-terminal domain (CTD) of RNA pol II30 at 
splice sites by using native elongating transcript sequencing data  
(NET-seq)31. In NET-seq, we observed similar total signal and signal 

for phosphorylation at the second peptide in the CTD heptapeptide 
repeats (denoted Ser2p) at the 5′ splice site (Fig. 2g,i), but substan-
tially more unphosphorylated RNA poll II signal at the flanking  
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5′ splice sites of slow introns (Fig. 2h). These data indicated the rela-
tive absence of proximal RNA pol II phosphorylation as a potential 
mechanism for the decreased splicing efficiency of these lncRNA 

Figure 2 Dynamics of intron excision. Introns with fast, medium and slow intron-excision speeds were identified by clustering values of introns with 
sufficient data (n = 21,782) at all labeling time points. (a–d) Violin plots representing the density of the distribution with embedded box-and-whisker 
plots as in Figure 1, depicting the distribution of θ values for introns grouped on the basis of clustering excision dynamics (a), host-gene annotation 
(107,410 coding introns and 775 lncRNA introns) (b), constitutive or alternatively spliced adjacent exons (mean value = 0.37) (c) and the type of small 
RNA hosted by the intron (d). Const, consitutive; alt, alternative; w/o smRNA, without small RNA; TPM, transcripts per kilobase per million. (e) Average 
receiver operating characteristic (ROC) curve for predictions on the basis of five-fold cross-validation using all features (black) or all features excluding 
those derived from 4SU data, such as synthesis and degradation rates (red). (f) Bubble plot depicting the differential contribution and importance of 
features in classification. The differences (fast − slow) in the mean decrease in model accuracy for each class (y axis) plotted against the t statistic of 
the difference of means between intron classes (fast − slow). The circle size is the mean decrease in Gini coefficient representing the importance of 
that feature in the classification. Features with statistically significant differences (determined by two-sided t tests between fast introns, n = 8,573 
and slow introns, n = 3,852; P < 0.05) are labeled in red. (g,h) The average NET-seq signal ±25 nt from the 5′ splice sites of total RNA poly II (g), 
unphosphorylated RNA pol II (h) and Ser2p RNA pol II (i) for fast (green), medium (yellow) and slow (red) introns. Source Data are available online.

introns, results consistent with previously reported in vitro results32. 
The GC content, splicing-regulatory elements and RNA pol II  
phosphorylation were very different between fast and slow introns  
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and were important for classification as well as for discriminating 
coding and lncRNA introns.

Differences in RNA metabolism between coding and 
noncoding genes
Differences in steady-state transcript levels observed between 
lncRNAs and mRNAs must be due to differences in the metabolism of 
lncRNAs. To monitor the entirety of RNA life from synthesis to trans-
lation, we complemented the 4SU-derived features with the following 
quantitative estimates of subcellular localization and translation status 
all in HEK293 cells (Online Methods): the enrichment of cytosolic 
over nuclear expression (CytN)23; the enrichment of polyribosomal 
over cytosolic expression (PlyC)24; and translational potential (TrP), 
which represents the amount of translating ribosomes on a transcript 
on the basis of codon-by-codon movement9. We focused the rest of 
our analysis on the 15,120 genes for which we had complete data.

We observed a high correlation among rates calculated from differ-
ent labeling times for all genes (Supplementary Fig. 3a–d), and the 
degradation rates were similar to previous estimates (R = 0.53)33. In 
agreement with earlier results from mouse cells34, transcripts encod-
ing ribosomal proteins exhibited high synthesis and processing as well 
as low degradation rates, thus confirming the quantitative behavior of 
the estimated rates (Fig. 3a). Very different RNA-metabolism patterns 
generated similar steady-state behavior: for example, although they 
exhibited similarly low steady-state RNA levels, mRNAs encoding 
KRAB-domain transcription factors exhibited average synthesis rates 

and high degradation rates, whereas mRNAs encoding extracellular 
proteins exhibited low synthesis rates and average degradation rates 
(Fig. 3a). These results highlight the limitations of standard RNA-seq 
protocols that assay only abundance.

The average synthesis and processing rates for lncRNAs were 3.4 
and 2.9 times lower, respectively, than those for protein-coding genes 
(Fig. 3b,c). lncRNAs had average degradation rates 9.6 times higher 
than those of mRNAs (Fig. 3d), a result markedly different from 
those from previous less comprehensive studies reporting lncRNAs 
to be on average only 1.6 times35 or 0.97 times36 less stable than 
mRNAs. lncRNAs were modestly more nuclear than mRNAs (Fig. 3e),  
and their polyribosomal localization was similar (Supplementary 
Fig. 3e). The majority of lncRNAs did not contain actively translated 
ORFs9 (Fig. 3f), thus confirming their status as bona fide noncoding 
RNAs. Among polyribosomal lncRNAs, those exhibiting evidence 
of translation were more transcribed (Supplementary Fig. 3f) and 
more stable (Fig. 3g).

Annotation-agnostic gene classification via RNA metabolism 
profiles
Although there were substantial differences in numerous aspects of 
RNA metabolism between annotated coding genes and lncRNAs, 
we also noticed that both exhibited a wide and overlapping range 
of behavior (Figs. 2 and 3). This result highlighted the heterogene-
ity in metabolism of both lncRNAs and mRNAs. We hypothesized 
that genes with similar RNA metabolism features would reflect the  
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rank-ordered, and the enrichment score (as in gene set enrichment analysis) was calculated for each PantherDB gene. Gene sets enriched at the top of 
the list (i.e., those with higher values for a given feature) have positive enrichment scores (red), and those enriched at the bottom of the list have negative 
enrichment scores (blue). (b–f) Box-and-whisker plots and violin plots as in Figure 1, for all detected genes (n = 15,120), depicting the distribution of 
synthesis rates (b), processing rates (c), degradation rates (d), cytoplasmic versus nuclear localization (e), translation for coding genes, lncRNAs and 
pseudogenes (pseudo) (f). (g) Distribution of degradation rates for polyribosomal lncRNA (PolyCyt > 0.1) divided into groups on the basis of the presence 
(n = 58) or absence (n = 310) of a RiboTaper-detected translated ORF from ribosome profiling data in HEK293 cells. Source data are available online.
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coordinated activity of specific RNA-processing factors. Importantly, 
for noncoding RNAs this classification would help distinguish which, 
if any, of the types of regulatory mechanisms the RNAs might partici-
pate in. Therefore, we clustered all 15,120 genes de novo on the basis of 
all six features of the metabolism profiles. The number of clusters was 
determined by using the gap statistic (Supplementary Fig. 4a).

We identified seven RNA classes containing from 921 to 3,293 genes 
(Fig. 4a). Classes c1–c4 were enriched in coding genes (n = 10,793), 
although they contained 220 lncRNAs (Fig. 4b). Classes c5–c7 were 
enriched in lncRNA (n = 1,752), although they contained a similar 
number of coding genes (n = 1,838). Importantly, most GENCODE-
defined lncRNA subcategories (for example, long intergenic noncod-
ing RNAs or antisense) were primarily nonspecifically distributed 
across clusters (Fig. 4c), thus demonstrating that classification on 
the basis of positional genomic features does not coincide with spe-
cific lncRNA behavior. In agreement with results from earlier studies 
indicating that many processed-transcript RNAs are translated9, this 
biotype was more likely than other lncRNA biotypes to be in c1–c4.

Even though coding genes were enriched in classes c1–c4, they 
occurred in all seven classes enriched in distinct characteristics and 
encoding functionally related proteins (Supplementary Fig. 4b).  
Genes in c1 and c2 exhibited the most similar RNA metabolism 
profiles. The c1 genes showed the highest expression and lowest 
tissue specificity, in agreement with ‘housekeeping’ genes such as 
mRNAs encoding ribosomal proteins. Genes in c3 were synthesized 
and processed well but had higher degradation rates and were less 
cytoplasmic; this class was enriched in transcription factors, par-
ticularly the aforementioned KRAB-domain family members. These 
genes may be subject to nuclear retention as a mechanism reduc-
ing cytoplasmic gene-expression noise created by transcriptional 
bursts37,38; indeed, c3 genes, relative to other classes, have been found 
to exhibit less cytoplasmic localization in a recent study in mouse liver  
tissue (Supplementary Fig. 4d). Genes in c4, compared with c1–c3, 
encoded receptors and had relatively lower synthesis, processing and 
translation rates along with higher degradation rates. These genes 
exhibited the most tissue specificity within c1–c4 and had steady-
state expression levels similar to those of genes in c6. Within c5–c7, 
clusters with transcripts showing little to no evidence of translation, 
the c6 mRNAs had the highest synthesis rates and the most nuclear 
localization, and were enriched in pseudogenes along with calcium-
channel- and ion-channel-encoding mRNAs. Genes in c5, typified 
by G-protein-coupled receptors and ion channels, and c7, typified 
by peptide hormones, exhibited similar steady-state levels of expres-
sion but very different degradation rates and localization. The c7 
genes had the highest proportion of protein-coding genes that had 
no functional classification and were part of the ‘missing’ proteome39 
(Supplementary Fig. 4c), thus raising the possibility that some may 
not be (or may no longer be) protein coding.

Classes exhibited overlapping gene-expression distributions 
(Supplementary Fig. 4e) and thus were not recapitulated by steady-
state expression or any individual RNA metabolism features. For  
all classes, the maximum expression levels of genes across 101 
ENCODE tissues and cell lines were correlated with their expression 
in HEK293 cells (Fig. 4d and Online Methods). Classes c4–c7 exhib-
ited the most tissue-specific expression (Supplementary Fig. 4f).  
Genes not expressed in HEK293 cells had the lowest expression 
levels across tissues (Fig. 4e). These results supported the gener-
ality of RNA-metabolism-derived classes and not simply HEK293  
cell-specific behavior. Importantly, they highlighted the distinct utility 
of our new classes compared with existing classifications or biotypes 
(Supplementary Fig. 4g).

Classes exhibit specific evolution and fitness signatures
The seven classes exhibited differences in gene age (origination in 
vertebrate phylogeny derived from ref. 40). Classes c1, c2 and c3 
were enriched in ancestral protein-coding genes predating the diver-
gence of vertebrates (Fig. 5a). Many lncRNAs originated through-
out mammalian and primate evolution, whereas pseudogenes were 
gained primarily in primates. Genes in c4 and c5 were gained before 
the divergence of eutherian mammals. Classes c3, c6 and c7 showed 
significant enrichment for gains in the primate lineage, and c6 and 
c7 were enriched in human-specific genes. These two classes had 
the highest degradation rates, which, compared with synthesis rates, 
were more strongly correlated with gene age (Fig. 5b,c). This result 
was consistent with observations of high turnover of lineage-specific 
lncRNAs in tetrapods41 as well as rodents42. We found that young 
genes have managed to be synthesized but have not avoided being 
degraded, as has been suggested for the balance between splicing and 
polyadenylation of RNAs produced from divergent transcription43.

Distinct regulatory pathways shape RNA classes
The classes responded in specific ways to perturbations in cellular 
RNA-quality-control and RNA-regulatory pathways (Fig. 5d). Genes 
in c3 were the most downregulated after depletion of ELAVL1 (HuR), 
an RNA-binding protein (RBP) antagonizing AU-rich element (ARE)-
mediated decay. The genes’ nuclear preference is thus aligned with the 
pre-mRNA-stabilizing function of HuR44. These genes also exhibited 
the highest 3′ untranslated region (UTR) ARE content and degrada-
tion rates except for c7, thus suggesting a particular sensitivity of these 
genes to cytoplasmic ARE-mediated-decay mechanisms. The nuclear 
poly(A)-binding protein (PABPN1) and poly(A) polymerase (PAP; 
official symbol PAPOLA)-mediated RNA decay (PPD) pathway limits 
the accumulation of inefficiently processed nuclear RNAs45. Both c5 
and c7 genes exhibited the lowest processing rates and increased the 
most after overexpression of a dominant-negative PABPN1 mutant 
(LALA) that binds RNA but cannot stimulate PAP45. Interestingly, 
only c5 and c7 genes exhibited strong negative correlation between 
processing rate and export to the cytoplasm (Fig. 5f,h), thus explain-
ing the lower sensitivity of c6 genes to PPD. Furthermore, the classes 
exhibited unique response patterns to depletion of different RBPs in 
K562 cells from ENCODE (Supplementary Fig. 5a). Altogether, these 
results indicated that RNA classes are controlled by distinct regulatory 
pathways in multiple human cell types.

We examined the relationship between different steps of RNA 
metabolism by quantifying each pairwise association between two 
features while accounting for all other features (partial correlation 
analysis; Online Methods). Class c1 genes exhibited the most interde-
pendence among different steps of RNA metabolism (Fig. 5e), whereas 
c6 and c7 (Fig. 5g,h) exhibited the least. The coupling among various 
steps of RNA metabolism is expected to be dependent on cis-regulatory  
elements allowing these genes to interact with the responsible RNA-
processing machinery. Thus, less coupling of RNA metabolism is 
indicative of classes enriched in younger genes (Fig. 5a), which have 
a lower fraction of their sequences under evolutionary constraint.

lncRNAs in different classes exhibit distinct behavior
Finally, we focused on lncRNAs, first asking which classes  
were enriched in known functional lncRNAs from lncRNADB 
v2.0 (ref. 14). Classes c1, c2 and c3 exhibited the strongest overlap 
with lncRNADB (Fig. 6a), whereas c4 and c6 were only ~1.5 times  
more likely to be found in lncRNADB than expected. In con-
trast, lncRNADB genes were depleted in c5 and particularly in c7. 
GENCODE lncRNA biotypes showed less difference in overlap  
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with lncRNADB, and processed transcripts showed the strongest 
enrichment (Supplementary Fig. 6a).

To complement the gene origination analysis, we compared genic 
regions of different classes by using fitCons, an approach that integrates 

sequence divergence in primates and sequence polymorphisms among 
humans with functional genomic data to estimate the probability that a 
point mutation will have a fitness consequence46. The exonic sequences 
from lncRNA genes in c1–c4 and c6 had higher fitCons scores than 
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those in c5 and c7 (Fig. 6b). Examination of coding and UTR sequences 
of coding genes revealed a similar pattern (Supplementary Fig. 6b,c). 
Among the classes enriched in lncRNAs (c5–c7), c6 had higher  

fitCons scores and behaved more like c1–c4 genes. c5 lncRNA exons 
had lower fitCons scores than those from c7, which had substantially 
higher degradation rates. The lower constraint on younger c7 exonic 
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lncRNA sequences was consistent with results from earlier evolutionary 
studies41,42. These differences in ‘fitness consequences’ in the exonic 
sequence encoded by both coding genes and lncRNAs strongly support 
the utility of our classes (Supplementary Fig. 6d).

Histone modifications at TSSs have been used to distinguish 
between promoter loci (with trimethylated histone H3 K4 (H3K4me3)) 
and enhancer-like loci (with monomethylated H3 K4 (H3K4me1)). 
This approach has been used to define different classes of intergenic 
lncRNAs47. We compared the ratio of H3K4me1 versus H3K4me3 at 
annotated lncRNA TSSs of different classes (Fig. 6c). We found that 
c1–c4 promoters had low H3K4me1 and high H3K4me3 signals, a 
result consistent with ‘promoter-like’ behavior. The c5–c7 promoters 
had similarly low signals for both H3K4me1 and H3K4me3, a result 
more consistent with background transcription. In these classes, a 
minority of promoters had higher H3K4me1/H3K4me3 ratios, which 
may indicate enhancer-like properties that may be cis regulatory but 
are unlikely to function as RNAs.

The classification of lncRNAs on the basis of their RNA metabo-
lism provided insights regarding whether they are bona fide lncRNAs 
and what their potential modes of action might be. For example, 
LINC00493 (Fig. 6d) belonging to c1, contained a highly translated 
ORF with peptide evidence, thus providing additional evidence to 
annul its status as a lncRNA48. DANCR (Fig. 6e), a member of c2, 
is involved in the antagonism of miRNAs49,50, in agreement with its 
high stability and cytoplasmic localization. MALAT1 belonged to the 
category of stable and nuclear c3 genes (Fig. 6f), in agreement with 
its known role in splicing51. Genes in c4 and c6 had similar synthesis, 
processing and degradation rates, but c6 RNAs were strongly localized 
to the nucleus. Accordingly, TUG1, a lncRNA capable of recruiting 
Polycomb repressive complex 2 and silencing a subset of genes52, was 
a member of c6 (Supplementary Fig. 6e). The lncRNAs in c4 may 
have cytoplasmic and/or nuclear functions. HOTAIRM1A, a c4 gene, 
has a nuclear function, given its ability to modulate the expression 
of neighboring HOX-encoding genes53, although we also detected 
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a spliced cytoplasmic isoform (Fig. 6g). In this way, well-studied 
lncRNAs provide hypotheses regarding other lncRNAs belonging to 
the same class. The lncRNAs in c5 and especially c7 were probably 
transcriptional byproducts and thus were unlikely to be functional as 
RNAs (Supplementary Fig. 6f,g).

DISCUSSION
The comprehensive analysis presented here hinges on a multivariate 
integrated view of RNA processing, but it is instructive to place this 
analysis within the context of previous work examining only individ-
ual aspects. We found that lncRNA genes exhibited lower synthesis, 
processing and stability than coding genes. In agreement with the 
results from other studies in humans, we also observed that lncRNAs 
were only modestly more enriched than mRNAs in the nucleus2,11,20, 
in spite of the popular notion of their strong nuclear localization16. 
Poorer processing and higher degradation of lncRNAs would partially 
explain this observation independently of the regulatory capacity of 
the lncRNA.

Lower steady-state lncRNA expression was explained by differences 
in both synthesis and degradation. Few studies have explicitly compared 
mRNA and lncRNA stability. A report on human cells has observed 
minimal differences in RNA stability36. Experiments in mouse neu-
roblastoma cells have also indicated similar stability35; in agreement 
with our findings, experiments in mouse dendritic cells have indicated 
high degradation rates for intergenic lncRNAs but similar synthesis 
and processing rates54. Beyond experimental, annotation, species- and 
context-specific differences, the heterogeneity of lncRNAs and the lack 
of a common classification make it inherently difficult to reconcile 
conclusions from different studies. Finally, a low-abundance lncRNA 
might have a trans-acting function if it were sufficiently stable, and it 
might even participate in sequential interactions, thereby ‘amplifying’ 
its regulatory capacity, similarly to mRNAs being translated multiple 
times. Thus our integrative classification of RNAs, which covered 
15,120 genes, including 1,972 lncRNAs, should provide an important 
step toward gaining functional and relational coherence in the field.

The lncRNAs and coding genes were much more similar within a 
given class than across classes (Supplementary Fig. 6e), thus indicat-
ing that we did not randomly assign a smaller number of lncRNAs 
driven by the larger number of mRNAs. Attempts to classify lncRNAs 
independently of gene orientation (such as GENCODE biotypes) have 
largely relied on evolutionary sequence conservation and chromatin 
modifications, and in some cases have been restricted to intergenic 
lncRNAs. Overlapping and complex gene models limit the compre-
hensiveness and resolution of these classifications, but did not affect 
our classification, because our data are strand specific. Although this 
study focused on a single human cell line, we expect to see tran-
script- and context-specific differences in behavior. Furthermore, 
methods to address the evolutionary conservation and selection of 
RNA structural elements may be important for inferring lncRNA-
mediated regulation in spite of the observation that lncRNAs fold 
less stably than mRNAs55.

Our approach uncovered a considerable fraction of annotated 
protein-coding genes transcribed in a given cell type that are not 
processed and translated into proteins. This finding demonstrates 
that generating transcriptomic data beyond steady-state RNA-seq is 
both beneficial and necessary. Some of these transcripts are under 
active regulation, for instance through their retention in the nucleus, 
and are translated under specific conditions. Furthermore, any given 
gene exists on a continuum within a specific cellular and evolution-
ary context and may be in the process of gaining or losing specific 
characteristics. As such, some of the protein-coding genes that cluster 

with pseudogenes or unstable lncRNAs may never generate proteins, 
but this apparent pseudogeneization may have occurred too recently 
to allow for accumulating sequence changes typically used to identify 
pseudogenes. Likewise, some currently annotated lncRNAs encode 
translated ORFs and produce detectable peptides, and moreover their 
entire processing resembles that of protein-coding genes to such an 
extent that they can safely be reannotated. However, such RNAs rep-
resent a relatively small fraction; furthermore, most known functional 
lncRNAs are within RNA classes that show evidence of translation but 
lack known detectable peptides. The extent to which the translational 
signature relates to the noncoding function of these RNAs, or whether 
they may represent bifunctional genes, is unclear56.

Our classification provides information on whether a given individ-
ual lncRNA is functional as well as the types of function (i.e., regulation 
of transcription, splicing, stability or translation) it may perform; how-
ever, additional data and analyses are necessary to accurately predict 
a precise molecular mechanism or targets of an individual lncRNA. 
Nevertheless, the processing patterns indicate that the majority of 
detectable lncRNAs do not encode RNAs that are likely to regulate 
gene expression in trans; comparatively few lncRNAs show evidence 
of ‘enhancer-like’ marks that may indicate cis-regulatory function. 
Altogether, these classes provide a rationale for prioritizing lncRNAs 
for which genetic evidence should be painstakingly collected57,58 and 
suggest the potential types of regulation that they may impart.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.
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have been deposited in the Sequence Read Archive under accession 
code GSE84722.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METhODS
Cell culture. HEK293 cells were cultured in high-glucose DMEM (Thermo 
Fisher, 41965039) supplemented with 10% FBS (Thermo Fisher, 16000044)  
and 1% pen/strep (Thermo Fisher, #15070063). Cells were authenticated and 
were free of mycoplasma contamination.

Total RNA. RNA from human embryonic kidney cells (HEK293) was extracted 
and purified with TRIzol (Life Technologies) and Direct-zol (Zymo), respec-
tively. ERCC RNA standards were spiked into 2-µg aliquots. Next, three dif-
ferent approaches were used to exclude abundant rRNAs and enrich for RNAs 
of interest. Ribosomal RNA was depleted with (i) Ribozero Gold (Illumina) 
and (ii) hybridization with DNA probes complementary to rRNA, then treated 
with thermostable RNase H (Epicentre) as described in ref. 59. The final sample  
was subjected to one round of poly(A) selection with Dynabeads oligo(dT)25 
(Life Technologies). Expression levels of cellular transcripts and ERCCs were 
quantified with RSEM60. The fit of the known number of ERCC molecules and 
the amount of RNA per cell were used to estimate the transcripts per million units  
of abundance and to calculate the absolute average RNA copy number per cell. 
The strong positive association (R2 = 0.94, Supplementary Fig. 1a) between the 
RNA-seq ERCC estimates and known ERCC concentrations permitted accurate 
RNA copy-number estimates. High- and low-expression regimes were determined 
by fitting a Gaussian mixture model with two components with mclust61,62.

Metabolic labeling. Each replicate was performed on different days from differ-
ent HEK293 stocks. Cells were thawed and passaged twice before each experi-
ment. For each experiment 2.5 × 106 HEK293 cells were seeded in a 10 cm2 tissue 
culture plate and incubated at 37 °C overnight. Cells were exposed to 500 µM 
4SU for 7.5, 15, 30, 45 or 60 min. For the 7.5- and 15-min samples, 2 × 10 cm2 
tissue-culture plates were used. At the time of collection, medium was removed, 
and cells were washed in PBS. Cells were directly collected in 3 mL of TRIzol. 
Separation of labeled RNA was performed as previously described63.

RNA-seq data processing. Reads were first mapped to rRNA sequences with 
bowtie v1.0.1 (https://sourceforge.net/projects/bowtie-bio/files/bowtie/1.0.1/
bowtie-1.0.1-linux-x86_64.zip/download/)64. Reads that did not map to rRNA 
were subjected to our analysis pipeline performed with a combination of in-house 
scripts and published software.

The pipeline performs the following tasks:
1.  Quantification of primary- and mature-transcript expression
Mature- and primary-transcript expression was quantified with RSEM v 1.2.11 

(http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.11.tar.gz)60. To calculate pri-
mary-transcript expression, we included an additional isoform corresponding to 
the sequence of the full gene locus. Specifically, we modified the GENCODEv19 
gtf and used this as the input for the ‘rsem-prepare-reference’ function to gener-
ate a modified index used for quantification. For each gene, we calculated the 
expression of ‘mature’ RNA as the sum of all isoforms for that gene excluding 
the ‘primary’ transcript. For intronless genes, primary and mature expression 
values were summed.

2. Alignment and coverage
For alignment, reads were mapped to hg19 with STAR v2.4.0j (https://github.

com/alexdobin/STAR/releases/tag/STAR_2.4.0j/) and an index built on gencode 
v19 (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.
v19.chr_patch_hapl_scaff.annotation.gtf.gz/)65.

For coverage tracks, the unique read-depth normalized bedgraph  
output from STAR was converted into bigwig format with bedGraphToBigWig 
(http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedGraphToBigWig). 
GRO-seq coverage comparison analysis and all coverage plots for specific genes 
were performed with these normalized bigwig files. We included comparisons 
to a deeper GRO-seq library generated in HeLa cells66.

3. Calculation of splicing information
We used bam2ssj (https://github.com/pervouchine/bam2ssj)67 to quantify 

reads overlapping exon-exon splice junctions and exon-intron or intron-exon 
splice sites. The software was slightly modified to output the geneIDs associ-
ated with each splice junction. A given junction/splice site was included in  
downstream analysis if it was supported by more than five reads. The output 
was used to create bed and fasta files necessary to calculate splicing features 
(described below).

4. Splicing features
5′- and 3′-splice-site strength was calculated with MaxENT (http://genes.mit.

edu/burgelab/maxent/download/)68. Polypyrimidine and branchpoint scores were 
calculated with SVM-BPfinder (https://github.com/RegulatoryGenomicsUPF/
svm-bpfinder/)69 on the first 75 nt upstream of each 3′ splice site. Exonic 
enhancer and silencer density was calculated with SROOGLE (http://sroogle.tau.
ac.il/SROOGLE.rar)70. Other features for exons and introns (length, GC content, 
distance to TSS/pA site) were calculated with bedtools and custom scripts.

Annotation. Gene annotation was retrieved from the GENCODE V19 according 
to the ‘gene_type’ tag in column 9. The ‘Annotation’ section of the Supplementary 
Note includes definitions of the annotation categories.

Inferring metabolism rates with INSPEcT. Rates of synthesis, processing and 
degradation were inferred for triplicates from independent cell cultures with 
INSPEcT26. We considered using DRiLL; however such an analysis would have 
required software that was not freely available. Earlier comparisons between the 
two methodologies have indicated that INSPEcT (freely available in Bioconductor) 
performs as well or better than DRiLL26. Instead of intronic and exonic RPKMs, 
which are typically used in INSPEcT, we provided primary and mature TPMs 
(described above) as input. Doing so prevented the potential overestimation of 
mature sequences due to consideration of all exonic sequences as being mature. 
We used rate estimates that accounted for the degradation of transcripts during 
the labeling pulse. Rates estimated from 7 and 15 min were systematically higher 
and exhibited a larger coefficient of variation (data not shown) that could poten-
tially have been resolved by more efficient biotin conjugation methods71.

Modeling intron excision. Only introns/junctions with more than five reads 
in all three replicates were used for downstream analysis. For each intron, we 
calculated the average θ and Ψ (Supplementary Fig. 4a) along with features 
described above (Supplementary Fig. 4b). We clustered Ψ values into either a 
‘constitutive’ class (median Ψ = 1) or an ‘alternative’ class (median Ψ = 0.37) with 
k-means clustering (k = 2)72. We performed two tasks with the randomForest 
package in R73:

1. Classification of introns by excision kinetics
Individual introns were clustered on the basis of the θ value throughout the 

time course with k-means (k = 3) clustering.
Classification of fast versus slow introns was performed with (k) all features 

and (ii) all features except those derived from labeling data (for example, synthesis 
and degradation rates).

Similar results were achieved for both classifications independently of the 
fraction of data withheld for testing (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 
0.9). Data were randomized, and then x fractions were set aside for testing, and 
the rest were used for training.

Feature importance was extracted with the importance() function from the  
randomForest package. The ‘Importance’ reported in Figure 4c is the node impu-
rity, as measured by the Gini index.

2. Prediction of θ with random forest regression for different intron types.
We performed predictive modeling on four non–mutually exclusive classes 

of introns: (i) introns within protein-coding genes; (ii) introns within lncRNA 
genes; (iii) introns considered to be mirtrons (i.e., introns reported as mirtrons 
in ref. 74 and supported by HEK293 AGO2 PAR-CLIP data from ref. 75); and  
(iv) introns containing snoRNAs (i.e., introns annotated as snoRNAs and  
supported by HEK293 snoRNA-RBP PAR-CLIP data76).

We used all features as in the classification example, except that only Chasin 
ESE and ESS density were used, although similar results were achieved with other 
ESE/ESS sets.

The reported average R2 for all regression models corresponded to the ‘pseudo 
R-squared’ value (1 − mse / Var(y)) calculated in the R randomForest package.

The reported importance represented the increase in the residual sum  
of squares.

We calculated two-sided t tests to identify features that were significantly  
different (P <0.05) between fast and slow introns.

More details about importance are provided in the randomForest documenta-
tion: “The first measure is computed from permuting OOB data: For each tree, 
the prediction error on the out-of-bag portion of the data is recorded (error rate 
for classification, MSE for regression)73. Then the same is done after permuting 

https://sourceforge.net/projects/bowtie-bio/files/bowtie/1.0.1/bowtie-1.0.1-linux-x86_64.zip/download/
https://sourceforge.net/projects/bowtie-bio/files/bowtie/1.0.1/bowtie-1.0.1-linux-x86_64.zip/download/
http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.11.tar.gz
https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.0j/
https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.0j/
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.chr_patch_hapl_scaff.annotation.gtf.gz/
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.chr_patch_hapl_scaff.annotation.gtf.gz/
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedGraphToBigWig
https://github.com/pervouchine/bam2ssj
http://genes.mit.edu/burgelab/maxent/download/
http://genes.mit.edu/burgelab/maxent/download/
https://github.com/RegulatoryGenomicsUPF/svm-bpfinder/
https://github.com/RegulatoryGenomicsUPF/svm-bpfinder/
http://sroogle.tau.ac.il/SROOGLE.rar
http://sroogle.tau.ac.il/SROOGLE.rar
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each predictor variable. The difference between the two are then averaged over 
all trees, and normalized by the standard deviation of the differences. The second 
measure is the total decrease in node impurities from splitting on the variable, 
averaged over all trees. For classification, the node impurity is measured by the 
Gini index. For regression, it is measured by residual sum of squares.”

Spatial meta-analysis. We used bigwig tracks of mammalian NET-seq data 
for RNA pol II with different phosphorylation status31. Meta-analysis was  
performed on specific sets of introns described at 50 nt upstream and down-
stream of the 5′ splice site. We used genomation to calculate the average signal 
of winsorized data (exclusion of outliers outside the 99th percentile that can skew 
the average profile)77.

Overlap analysis. The odds ratios depicted in heat maps representing overlap 
between two lists were calculated with the GeneOverlap R package78. Unless 
otherwise indicated, −log10(P values) and odds ratios >8 were set to 8.

Annotation-agnostic classification. We performed k-means clustering with the 
gap statistic to determine the number of clusters79 on the following six hallmarks 
of RNA metabolism:

1. Synthesis rates
We used rates from all labeling times (7.5, 15, 30, 45, 60 min) as pseudo-

replicates for all rates.
2. Processing rates
Processing rates for intronless genes were imputed with the MICE  

R package80.
3. Degradation rates
Genes that had unassigned (‘NA’) degradation rates were excluded.
4. Cytoplasmic versus nuclear ratio
We calculated the log2 (mature cytoplasmic TPM + 1 × 10−4) − log2  

(mature nuclear TPM + 1 × 10−4) from the above-described RSEM-based  
quantification of rRNA-depleted strand-specific paired-end RNA-seq libraries 
generated in ref. 23.

5. Polyribosomal versus cytosolic ratio
We calculated the log2 (mature polyribosomal TPM + 1 × 10−4) − log2 (mature 

cytosolic TPM + 1 × 10−4) from the above-described RSEM-based quantifica-
tion of rRNA-depleted strand-specific paired-end RNA-seq libraries generated 
in ref. 24.

6. Translation
We used the Multitaper spectral coefficient at a frequency of 3 nt along 

the translated ORFs, with the R package ‘multitaper’. This estimate, termed  
the ‘translational potential’ (TrP), quantitatively represents the amount of trans-
lating ribosomes weighted on the basis of their codon-by-codon (3-nt perio-
dicity) movement, which has previously been shown to represent bona fide 
translation elongation9. The TrP was calculated with Ribo-seq data from HEK293  
cells previously generated in our laboratory9. After the addition of a pseudo-
count (specifically the minimum TrP value), these values were log10 transformed  
and centered.

ENCODE data. Paired-end strand-specific total RNA-seq data were quantified 
with kallisto (https://github.com/pachterlab/kallisto/). We used the calculated 
TPM for only ~15,000 genes that were in the HEK293 clustering analysis. To 
facilitate comparisons with HEK293 data, we also quantified transcripts for the 
HEK293 total RNA with kallisto. These TPMs were quantile normalized and used 
for calculating the median or maximum expression, correlations, fold changes 
and tissue specificity. Samples exhibiting low correlations with other samples 
(Spearman’s ρ < 0.42) were excluded. The mean was calulated for replicate sam-
ples. We used ENCODE data representing paired-end and strand-specifically 
sequenced total RNA (not poly(A)-enriched RNA) from 101 cell lines and tissues 
(described in the Supplementary Note). Tissue specificity scores were calcu-
lated with the Shannon entropy of the expression of a gene across all samples as 
described previously81.

ChIP-seq data for H3K4me1 and H3K4me3 and respective inputs from 
HEK293 was downloaded from ENCODE. Reads were aligned with bowtie2 
and then converted into a depth-normalized bigwig file. Bigwig files for each 
replicate were used to calculate promoter coverage defined as ±250 from the 
annotated start site for each gene analyzed and then averaged. To calculate the 

input-normalized signal for H3K4me3 and H3K4me1, the log2 of the input signal 
was subtracted from the log2 of matched H3K4me signal. Next, the normalized 
H3K4me3 was subtracted from the normalized H3K4me1. Promoter regions 
with no signal for either modification were excluded.

Miscellaneous. Heat maps were made with the aheatmap function from  
refs. 82–84. Coverage tracks for specific gene loci were made with Gviz85.  
Partial correlation analysis was performed with ppcor86 and plotted with qgraph87. 
Edges with correlation coefficients <0.1 were not plotted. AU-rich-element  
content was calculated with AREscore88.

Statistics. All statistical tests were performed in R. The t tests and nonparamet-
ric tests (KS and Wilcoxon tests) comparing distributions were performed with  
the base statistical functions. All specific tests are described in their respective 
sections of the Online Methods.

Code availability. Code and interactive-data visualization is available at https://
ohlerlab.mdc-berlin.de/software/Classification_of_human_genes_by_RNA_
metabolism_profiles_130/.

Data availability. Paired-end-read data for total RNA-seq and metabolic labe-
ling data have been deposited in the Sequence Read Archive under accession  
code GSE84722. These data also include processed data that may serve as a  
starting point for many analyses. Source data for Figures 1–6 are available  
with the paper online. Any other data are available from the corresponding 
authors upon request.
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