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The standardization fallacy
“We demand rigidly defined areas of doubt and uncertainty!" —D. Adams
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popular notion about experiments is
A that it is beneficial to reduce subjects'

biological and environmental
variability to mitigate the influence of
confounding factors on the response. The
argument is that by keeping the levels of
such factors fixed — a process called
standardization — we increase precision
by limiting the component of response
variance that is not due to the experimental
treatment. Unfortunately, although
standardization increases power, it can
also induce such unrealistically low
variability that the results do not generalize
to the population of interest and may
thus be irreproducible — the so-called
"standardization falla "‘. This month, we
show how to avoid this fallacy by balancing
standardization, which increases power to
detect an effect but reduces external validity,
with controlled heterogen ization, which may
reduce power but increases external validity.

Suppose we wish to test the effect of a
treatment factor X, (for example, a drug) on
some physiological response of an organism
{for example, a mouse) in the presence of
two other factors X, and X, that interact
with X, and whose effects are not of primary
interest but should not be ignored. We‘ll
write the response as R = dX, + X, + X, +
X,X, + fiX,X, + e, where d is the treatment
effect and s is random error. To account
for the X.X, interaction2 in the analysis,
subjects will be grouped into blocks,
each with a fixed level of X,, and assigned
randomly to control and treatment
within a blockl.

Let’s assume that X, is continuous, as is
the case for most confounding variables.
Relatively few are discrete, and those that
are, such as lab or batch of reagent, often
represent a proxy for a large number of
unmeasured (often unknown) continuous
covariates. How can we deal with this
factor and its potential interaction with X,
{when [33 i 0)?

First, we can use an agnostic design
{AGN} that simply ignores X, and relies on
randomization to balance its effect across
treatment and blocks (Fig. 1b). Here, X, will
vary unpredictably and its effect will be part
of random unexplained variation, which is
now the sum of variance of X,, fiX,X, and s.

This increase in variance reduces power“ to
detect a treatment effect (Fig. 2a).

Second, we can standardize X, by keeping
its level constant (Fig. 1c) so that it no
longer contributes to response variation
(Fig. 2a). Power will be increased but
the variation may be artificially low. For
example, observations from mice of a given
strain or age or kept under specific housing
conditions may not apply to all mice. The
design may still be internally valid but is
no longer externally valid. If we ignore this
in favor of increased power, we risk falling
victim to the standardization fallacy.

Critically, this standardized (STD) design
does not allow us to determine whether
X, interacts with X ,. In the absence of
an interaction, the choice of X, = It does
not affect power or the observed effect.
However, if interaction is present, the
observed effect (p = d + fik will be a biased
estimate of d and depend on both [7' and I:
(Fig. 2b). Because STD removes variability
within experiments but does nothing to
mitigate its effects across experiments
(or labs}, reproducibility of the observed
effect is poor.

Third, we can use one of two
heterogenized designs in which X, is
systematically varied: randomized complete
block (RCB) or fully crossed factorial
(FCF)design1. In RCB (Fig. 1d), two
levels of X, are selected and aligned
with X, blocks. Statistical significance of
the treatment effect is determined by
comparing the variation between treatment
and control groups to within-group
variation within blocks. Because RCB
accounts for variance of  X, and X,, it has
higher power than AGN.

However, RCB cannot untangle the
effects of the X,X, and XIX, interaction
terms because the levels of  X, and X, are
not sampled independently. This can be
achieved in a PCP design (Fig. 1e}, which
can decompose variance into components
attributed to each factor as well as any
interactions and, given replicates within a
block, can isolate and measure unexplained
residual variation. Because each block
requires more subjects, contributing to a
reduction in power unless sample size is
increased“, the number of factors that can be
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fig. 1 ] A confounding factor can be ignored,
standardized or heterogenized. a. In an
experimental design that compares the response
to a treatment factor X, in control and treatment
groups (rows) in the presence of a blocking
factor X, {columns}. a third confounding
factor X, with continuous levels (circle fill) can
be either I}, ignored and subject to random
variation (agnostic), c, standardized to a fixed
laboratory-specific level, or heterogenized with
two (or more} levels either d, aligned with X,
(randomized complete block, RCB) or a. fully
crossed (independently sampled} with X,

controlled by using FCF is usually limited by
economic, ethical and logistic costs.

We will illustrate the implications of
these designs and the consequences ofihe
standardization fallacy by exploring how
power and reproducibility vary with design
and treatment effect size and how the
observed effect a: relates to the underlying
treatment effect d. We will explore scenarios
with d 1::- U and use one—sided tests that
require or or D to avoid considering opposite
observed effects (negative) as significant.
However, since in a real experiment we
would not know the direction of the true
effect, we will also keep track of an", as]
and inf to indicate effect estimates that
are non—significant, significant and
negative (opposite to d) or significant and
positive, respectively.

Let’s simulate 25,flflfl experiments with
sample size n = 3 across a range of efl'ect
sizes 11' : 0—5 in the absence (,6 = fl) and
presence (,6 = —2) of an interaction behveen
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Fig. 2 | Standardisatien increases pewer but
leads in higher variatien between labs if an
interactien between treatment and cenfeunder
is  present ar When I, with varia nce Vartxgll is
fixed (it, = if], pewer te detect main effect at is
increased because variance ef  centrel (C) and
treatment {Ti respense [Iii is reduced. b, In the
absence ef an Egg interactien [fl = t1), pewer
is unchanged acmss tabs that standardize I3;
differently [fer example, I, = t = CI, 1 er 3'} and
all three labs ehserve the true treatment effect
d = 3. With interactiee {it = —21|. the ebserved
effect will vary en average by ELK] = alt, se the
ebserved effect may new be negative. Differences
in .t result in incensistent pewer and decreased
repmductbility.

Kl and I]. We use El 2 —t}.5 and {1.5 fer
centre! and treatment, X, = —I[t.5 er t}.5
fur blocks; this maintains a aere mean and
unit difference between levels. In AGE,
K, is sampled frem a standard nermal
distributien. In STD, a fixed value ef I; is
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selected randemly frem ene ef the values
ie ASH. In REE, the twe levels efIi are
determined by the minimum and masimum
values in ELEM. Because FCF perferms
similarly te HEB, albeit with lewer pewer,
we will net censider it further. Finally,
randem errer e is sampled frem the
standard uermal distributien.

We will use linear regressien {analysis
ef variance, er ANDVA] te fit R and
determine the significance {at = {1115} and
the magnitude and directien ef the estimate
rp-ef the treatment effect. Fewer, P, will
indicate the prebabilityr ef a significant
pesitive estimate {pf}, which cerrespends
te rejecting the null hypethesis that there is
ne pesitive treatment effect. Repreducibility
will be the preb ability ef making the
same inference [rejecting er net rejecting
the null} twice.

Witheut interactien between treatment
I, and ceefeunder K3 (,3: [I], the STD
and REE designs perferm equivalently
because the impact ef X, en the centrel
and treatment greups is the same and
cancels eut (Fig. 3a}. As expected, the AGN
design everall has the lewest pewer because
variatien in I, is net centrelled and adds te
unexplained residual variatien (Fig. 3a}.

In the presence ef  an interactien,
differences in pewer te detect as 1':- t] arise
because new the effect ef  K5 ne lenger
cancels eut (it depends en the treatment and
centrel via flXJKJ}. The larger the magnitude
effl [er variance ef K3 , the greater the
impact ef the interactien en pewer. As
befere, AGE has the lewest pewer fer all
If in ear range, but new STD has higher
pewer titan RICE — but eely fer d «c 1.3.

InteraetIe-nr fl = —E
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This can he explained by eliminatien [in
STD) er reductien {in REE} ef  variance due
te I}. Fer insight inte why STD has higher
pewer than RICE fer lew d but lewer pewer
at high at, let's leek at the distributiens ef  the
ebserved effect, at, fer each design |(Fig. 3b).

fit {I : t}, significant estimates ef  either
sign {rs}, an”) are false pesitives. STD has
the highest pewer {P : [1.2m because it has
the largest variance in up, making it mere
likely te cress the significance thresheld
by gressly under— er everestimating the
actual effects — thereby illustrating the
standardizatien fallacy. It preduces the
must inflated effect size estimates, with an
average at," ef  2.32.

Fer a small treatment effect, d = l ,  HID
still has the highest pewer [P = {1.35) and
centinues te misestimate the effect size and
its directien, since negative values ef  rp still
eccur at substantial rates. Altheugh AGE
and RICE have lewer pewer, they almest
never yield Ip «c t], se the directiees ef the
estimated effects are censistent with d
ameng experiments.

As the treatment effect site If increases,
the distributiens ef ‘F centinue te shift and
narrew. Simultaneeusly, the bias in the
estimate ef It decreases: the average ef Ipfi
gets cleser te true at. Hewever, beth the width
and the bias ef the Ipfi distrihutien decrease
very slewly in STD, making it perferm
peerly. Hete that even at large at = 4, STD
results in a streng right skew in ref.

[if the three designs, in the presence ef
interactien, REE has an excellent balance
ef high pewer and few bias {the average ef
eff is clesest te true If]. Impertaetly1r the
repreducibility is better with REE than STD
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Fig. 3 | Eenfeunder interactien can increase power te detect a treatment effect but reduce repreducfiiiity. a, Fewer and repreducibility prefiles fer AEH,
STD and REE designs fer true treatment effects d = ill—5 and sample size n = 3. b, Distributiens ef the ebserved effect at {gray line}L fer trueeffect d = l]. 'l and
filter each design in the presence at interactien- Histegrams with selid fitl celer indicate distributiens ef nee—significant (arm, gray}, significant and negative
[Is], magenta) and significant and pesitive'{rp+*, green} estimates. Alse shewn are pewer P {ratie ef areas at 4th" and up} and the mean ef It's"
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for all ii (Fig. 3a). Ifwe increase our sample
sine to n = 16, FCF’s power catches up to
RCB’s and FCF becomes a viable alternative
if we wish to measure the interaction.
However, because a larger sample will yield
higher power, we expect to see more false
positives at d = {1.

In summary, by incorporating
variation of confounding factors through
controlled heterogenization, we can
avoid the standardization fallacy and
improve reproducibility. The magnitude
of confounding effects can be analyxed
with fractional factorial5 or fully crossed
designsi. However, as more confounders
are added, the number of blocks (and hence
subjects} increases quickly, practically
restricting this approach to scenarios with
only a few confounders. In the presence

of an interaction between a confounder
and treatment, heterogeniaation (RCB or
PCP) is more effective than lab-specific
standardization in detecting small treatment
effects. Furthermore, when the experiment
is already run as a RCB (for example, in
batches), further heterogenization factors
can be introduced with no need to increase
to sample size. Even when heterogenization
requires more blocking and larger samples,
the higher external validity and improved
reproducibility will often outweigh the
extra effort and costs of introducing more
heterogenization factors". CI
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